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Chirality

I Experiment ⇒ only the left-handed components of the fermions
participate in charged current weak interactions, i.e. the W ’s only couple
to the left-handed components.

I

ψL = PLψ =
1
2

(1−γ5)ψ ψR = PRψ =
1
2

(1+γ5)ψ

Under parity transformations ψL(x0,~x) → ψR(x0,−~x) and
ψR(x0,~x) → ψL(x0,−~x)

I PL and PR are projection operators

P2
L = PL and P2

R = PR (PL PR = PR PL = 0, PL +PR = I)

I

ψ̄ γµψ = ψ̄LγµψL + ψ̄RγµψR and ψ̄ ψ = ψ̄L ψR + ψ̄R ψL .

(Thus for QCD with N massless fermions we have a U(N)×U(N)
(global) chiral symmetry - I come back to this in later lectures.)

I In order to accommodate the observed nature of the parity violation the
left and right-handed fermions are assigned to different representations
of SU(2)×U(1), with the right-handed fields being singlets of SU(2).
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Fermions

For a general representation of fermions the covariant derivative takes the
form:

Dµ = ∂µ − igAa
µ Ta − ig′YBµ ,

where the Ta are the corresponding generators of SU(2) and the Y ′s are the
weak-hypercharges. The covariant derivative can be rewritten in terms of the
mass-eigenstates as:

Dµ = ∂µ − ig√
2
(W+

µ T+ +W−
µ T−)− i

g2T3−g′2Y
√

g2 +g′2
Zµ − i

gg′
√

g2 +g′2
(T3 +Y)Aµ .

I Thus the electic charge operator is

Q = T3 +Y and e =
gg′

√

g2 +g′2
. (Q = −1 for the electron).

I The left-handed quarks and leptons are assigned to doublets of SU(2)
and the right-handed fermions are singlets.
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Assignment of Fermions

Q = T3 +Y

I The left handed leptons are assigned to the doublet.

EL =

(

νe

e

)

L
.

In order to have the correct charge assignments Yνe = YeL = −1/2 .

I For the right-handed lepton fields T3 = 0 and hence YeR = −1. In the
standard model we do not have a right-handed neutrino!

I For the left-handed quark fields we have the left-handed doublet:

QL =

(

u
d

)

L
.

with YQL = 1/6 .

I The right-handed quark fields therefore have YuR = 2/3 and YdR = −1/3 .

I Similar assignments are made for the other two generations.
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Fermion Lagrangian
The terms in the Lagrangian involving the fermions then take the form:

L = ĒL(i 6∂ )EL + ēR(i 6∂ )eR + Q̄L(i 6∂ )QL + ūR(i 6∂ )uR + d̄R(i 6∂ )dR

+g
(

W+

µ Jµ +

W +W−
µ Jµ−

W +Z0
µ Jµ

Z

)

+ eAµ Jµ
EM ,

where

Jµ +

W =
1√
2

(ν̄Lγµ eL + ūLγµ dL);

Jµ−
W =

1√
2

(ēLγµνL + d̄Lγµ uL);

Jµ
Z =

1
cosθW

{

1
2

ν̄LγµνL +

(

sin2θW − 1
2

)

ēLγµ eL +sin2θW ērγµ eR

+

(

1
2
− 2

3
sin2θW

)

ūLγµ uL −
2
3

sin2θW ūRγµ uR

+

(

1
3

sin2 θW − 1
2

)

d̄Lγµ dL +
1
3

sin2 θW d̄Rγµ dR

}

;

Jµ
EM = −ēγµ e+

2
3

ūγµ u− 1
3

d̄γµ d .
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Fermion Masses - Yukawa Couplings
The standard mass term for the fermions is of the form

mψ̄ψ = mψ̄LψR +mψ̄RψL .

It is therefore not invariant under the SU(2)L gauge-symmetry and can be
shown to spoil renormalizability.

I In the SM, mass terms for the fermions are generated through Yukawa
Couplings to the Higgs Doublet, for example:

∆Le = −λe (Ēi
Lφi)eR +h.c.

where i = 1,2 is the SU(2) label. As before, we rewrite the complex
doublet φ in terms of the fields shifted by 〈φ〉, so that

∆Le = −λe v√
2

ēLeR +h.c.+ interaction terms

In this picture therefore

me =
λev√

2
.
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Fermion Masses - Yukawa Couplings Cont.

me =
λev√

2
.

I Thus we have generated a mass-term for the electron in a gauge
invariant way. We have traded the parameter me for the Yukawa coupling
λe .

I λe is very small (v ' 250GeV) and the problem of understanding the
pattern of fermion masses becomes the problem of understanding the
pattern of Yukawa couplings.

I We can choose a gauge such that the scalar field is written in the form

φ(x) =
1√
2

(

0
v+h(x)

)

,

where h(x) is the physical Higgs scalar. The electron Yukawa term now

takes the form Le = −me

(

1+ h
v

)

ēe .
= −i me

v
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Fermion Masses - Yukawa Couplings Cont.

Le = −me

(

1+
h
v

)

ēe .

I By construction, it is a general feature that the couplings of the Higgs
boson h are proportional to the masses (or squares of masses) of the
particles it is interacting with.
This is an important ingredient in the phenomenology of Higgs searches.

I For the down quark we can introduce a similar Yukawa term to that of
the electron. For the up quark, this clearly does not work, but we can
exploit the existence of the invariant anti-symmetric tensor ε ij.

∆Lq = −λdQ̄i
LφidR −λuε ijQ̄i

Lφ†juR +h.c.

= −λd v√
2

d̄LdR −
λu v√

2
ūLuR +h.c.+ interaction terms

= −md

(

1+
h
v

)

d̄d−mu

(

1+
h
v

)

ūu .

(Note that apart from being singlets under SU(2), the terms in the action
also have zero net hypercharge.)
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Quark Mixing
Two Experimental Numbers:

B(K+ → π0e+νe) ' 5% (K+

e3 Decay) and B(K+ → π+e+e−) < 3×10−7 .

K+ π0
,π+

leptons

s u,d

Measurements like this show that s → u (charged-current) transitions are not
rare, but that Flavour Changing Neutral Current (FCNC) transitions, such as
s → d are.

In the picture that we have developed so far, there are no transitions between
fermions of different generations. This has to be modified.

The picture which has emerged is the Cabibbo-Kobayashi-Maskawa (CKM)
theory of quark mixing which we now consider.
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CKM Theory
In the CKM theory the (quark) mass eigenstates are not the same as the
weak-interaction eigenstates which we have been considering up to now.

Let

U′ =





u′

c′

t′



= Uu





u
c
t



= Uu U and D′ =





d′

s′

b′



= Ud





d
s
b



= UdD

where the ′s denote the weak interaction eigenstates and Uu and Ud are
unitary matrices.

I For neutral currents:

Ū′ · · ·U′ = Ū · · ·U and D̄′ · · ·D′ = D̄ · · ·D

and no FCNC are induced. The · · · represent Dirac Matrices, but the
identity in flavour.

I For charged currents:

Jµ +

W =
1√
2

Ū′
Lγµ D′

L =
1√
2

ŪLU†
uγµ UdDL =

1√
2

ŪLγµ (U†
uUd)DL ≡

1√
2

ŪLγµ VCKMDL
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The CKM Matrix
I The charged-current interactions are of the form

J+

µ = (ū, c̄, t̄ )Lγµ VCKM





d
s
b





L

,

I 2005 Particle Data Group summary for the magnitudes of the entries:




0.9739−0.9751 0.221−0.227 0.0029−0.0045
0.221−0.227 0.9730−0.9744 0.039−0.044
0.0048−0.014 0.037−0.043 0.9990−0.9992



 .

I How many parameters are there?

– Let Ng be the number of generations.
– Ng ×Ng unitary matrix has N2

g real parameters.
– (2Ng −1) of them can be absorbed into unphysical phases of the

quark fields.
– (Ng −1)2 physical parameters to be determined.
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Parametrizations of the CKM Matrix
I For Ng = 2 there is only one parameter, which is conventionally chosen

to be the Cabibbo angle:

VCKM =

(

cosθc sinθc

−sinθc cosθc

)

.

I For Ng = 3, there are 4 real parameters. Three of these can be
interpreted as angles of rotation in three dimensions (e.g. the three
Euler angles) and the fourth is a phase. The general parametrization
recommended by the PDG is





c12c13 s12c13 s13e−iδ13

−s12c23− c12s23s13eiδ13 c12c23− s12s23s13eiδ13 s23c13

s12s23− c12c23s13eiδ13 −c12s23− s12c23s13eiδ13 c23c13





where cij and sij represent the cosines and sines respectively of the
three angles θij, ij = 12,13 and 23. δ13 is the phase parameter.

I It is conventional to use approximate parametrizations, based on the
hierarchy of values in VCKM (s12 � s23 � s13).
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The Wolfenstein Parametrization

The Wolfenstein parametrization is

VCKM =















1− λ 2

2 λ Aλ 3(ρ − iη )

−λ 1− λ 2

2 Aλ 2

Aλ 3(1−ρ − iη ) −Aλ 2 1















.

I λ = s12 is approximately the Cabibbo angle.

I A,ρ and η are real numbers that a priori were intended to be of order
unity.

I Corrections are of O(λ 4).
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The Unitarity Triangle

Unitarity of the CKM-matrix we have a set of relations between the entries. A
particularly useful one is:

VudV∗
ub +VcdV∗

cb +VtdV∗
tb = 0 .

In terms of the Wolfenstein parameters, the components on the left-hand side
are given by:

VudV∗
ub = Aλ 3[ρ̄ + iη̄ ]+O(λ 7)

VcdV∗
cb = −Aλ 3 +O(λ 7)

VtdV∗
tb = Aλ 3[1− (ρ̄ + iη̄ )]+O(λ 7) ,

where ρ̄ = ρ(1−λ 2/2) and η̄ = η (1−λ 2/2).

The unitarity relation can be represented schematically by the famous
“unitarity triangle” (obtained after scaling out a factor of Aλ 3).
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The Unitarity Triangle Cont.

VudV∗
ub +VcdV∗

cb +VtdV∗
tb = 0 .

A = (ρ̄, η̄ )

α

C = (0,0)

γ

B = (1,0)

β

ρ̄ + iη̄ 1− (ρ̄ + iη̄ )

A particularly important approach to testing the Limits of the SM is to
over-determine the position of the vertex A to check for consistency.
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PDG2006 Unitarity Triangle

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1 1.5 2

sin 2β

sol. w/ cos 2β < 0
(excl. at CL > 0.95)

excluded at C
L  >  0.95

γ

γ

α

α

∆md

∆ms
 &  ∆md

εK

εK

|Vub/Vcb|

sin 2β

sol. w/ cos 2β < 0
(excl. at CL > 0.95)

excluded at C
L  >  0.95

α

βγ

ρ

η

excluded area has CL > 0.95
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Flavour Changing Neutral Currents (FCNC)
We have seen that in the SM, unitarity implies that there are no FCNC
reactions at tree level, i.e. there are no vertices of the type:

b s u c

.

Quantum loops, however, can generate FCNC reactions, through box
diagrams or penguin diagrams.

Example relevant for B̄0 – B0 mixing:

d b

b d

u,c, t u,c, t

d b

b d

u,c, t

u,c, t
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FCNC Cont.
Examples of penguin diagrams relevant for b → s transitions:

u,c, t

b s

W

Z0,γ,G

u,c, t

b s
W W

Z0,γ

We will discuss several of the physical processes induced by these
loop-effects.

The Glashow-Illiopoulos-Maiani (GIM) mechanism ⇒ FCNC effects vanish
for degenerate quarks (mu = mc = mt). For example unitarity implies

VubV∗
us +VcbV∗

cs +VtbV∗
ts = 0

⇒ each of the above penguin vertices vanish.
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The Discrete Symmetries P,C and CP

Parity
(~x, t) → (−~x, t).

The vector and axial-vector fields transform as:

Vµ (~x, t) → Vµ (−~x, t) and Aµ (~x, t) →−Aµ (−~x, t).

I The vector and axial-vector currents transform similarly.

Left-handed components of fermions ψL = ( 1
2(1−γ5)ψ) transform into

right-handed ones ψR = ( 1
2(1+γ5)ψ), and vice-versa.

I Since CC weak interactions in the SM only involve the left-handed
components, parity is not a good symmetry of the weak force.

I QCD and QED are invariant under parity transformations.
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Charge Conjugation – Charge conjugation is a transformation which relates
each complex field φ with φ†.

Under C the currents transform as follows:

ψ̄1γµψ2 →−ψ̄2γµψ1 and ψ̄1γµγ5ψ2 → ψ̄2γµγ5ψ1,

where ψi represents a spinor field of type (flavour or lepton species) i.

CP – Under the combined CP-transformation, the currents transform as:

ψ̄1γµψ2 →−ψ̄2γµψ1 and ψ̄1γµγ5ψ2 →−ψ̄2γµγ5ψ1.

The fields on the left (right) hand side are evaluated at (~x, t) ( (−~x, t) ).
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CP Cont.

Consider now a charged current interaction:

(W1
µ − iW2

µ ) Ūiγµ (1−γ5)VijD
j +(W1

µ + iW2
µ ) D̄jγµ (1−γ5)V∗

ijU
i,

Ui and Dj are up and down type quarks of flavours i and j respectively.

Under a CP transformation, the interaction term transforms to:

(W1
µ + iW2

µ ) D̄jγµ (1−γ5)VijU
i +(W1

µ − iW2
µ ) Ūiγµ (1−γ5)V∗

ijD
j

I CP-invariance requires V to be real
(or more strictly that any phases must be able to be absorbed into the
definition of the quark fields).

I For CP-violation in the quark sector we therefore require 3 generations.
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Higgs Mass and Interactions

Imagine that the Higgs potential is

V =−µ2 (φ†φ)+λ (φ†φ)2 and write φ =

(

0
1√
2
(v+h(x))

)

where v2 =
µ2

λ
.

In terms of h(x):

V = µ2 h2 +
√

λ µ h3 +
λ
4

h4 .

I We know v = µ/
√

λ = 250GeV from MW and other quantities.

I The mass of the Higgs is
√

2µ. Today, we have no direct way of knowing
this.

I The larger that mh is, the stronger are the Higgs self interactions.

I Finally, I stress that even if the overall picture is correct, the Higgs sector
may be more complicated than the simplest picture presented here.
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