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Contents

1. Spontaneous Symmetry Breaking

2. The Electroweak Theory

3. QCD

4. Flavourdynamics and Non-Perturbative QCD I

5. Flavourdynamics and Non-Perturbative QCD II

I start however by:

I Summarising the main points of Lecture 3.

I Discussing the last four slides of lecture 2.
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Main Points of Lecture 3

I Asymptotic Freedom ⇒ g(µ) decreases (logarithmically) with µ.
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Main Points of Lecture 3

I Asymptotic Freedom ⇒ g(µ) decreases (logarithmically) with µ.
I If there is a single (hard) scale Q in the process, it is convenient

to take µ ' Q and perform perturbation theory in
αs(Q) = g2(Q)/(4π).
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The Running Coupling Constant

αs(µ) at values of µ where they are measured, (τ -width, ϒ-decays, Deep
Inelastic Scattering, e+e− Event Shapes at 22 and 59 GeV, Z–Width, e+e−

Event Shapes at 135 and 189 GeV (PDG(2005)).

PDG(2005) result:
αs(MZ) = 0.1176±0.002.
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Main Points of Lecture 3
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Main Points of Lecture 3

I Asymptotic Freedom ⇒ g(µ) decreases (logarithmically) with µ.
I If there is a single (hard) scale Q in the process, it is convenient

to take µ ' Q and perform perturbation theory in
αs(Q) = g2(Q)/(4π).

I In general there are contributions from long-distance regions of
phase-space ⇒ there is a danger that we cannot use
perturbation theory.
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Main Points of Lecture 3

I Asymptotic Freedom ⇒ g(µ) decreases (logarithmically) with µ.
I If there is a single (hard) scale Q in the process, it is convenient

to take µ ' Q and perform perturbation theory in
αs(Q) = g2(Q)/(4π).

I In general there are contributions from long-distance regions of
phase-space ⇒ there is a danger that we cannot use
perturbation theory.

I For sufficiently inclusive processes the Bloch-Nordsieck and
Kinoshita-Lee-Naumberg Theorems (generalized to QCD) ⇒
these long-distance contributions cancel and we can use
perturbation theory, e.g. for e+e− → hadrons

σ = σ0

(

3∑
f

Q2
f

)

(

1+
αs(Q)

π
+1.411

α 2
s (Q)

(π)2 −12.8
α 3

s (Q)

(π)3 + · · ·

)

where I have neglected the contribution from the Z0 intermediate
state.
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Main Points of Lecture 3 - Cont.

e− e−

p

γ∗(q)

X

I In Deep Inelastic Scattering (DIS), the kinematical variable
x = −q2/(2p ·q) has the physical interpretation of being the fraction of
the hadron’s momentum carried by the struck quark.

I DIS yields information about the momentum distribution of partons in
the target hadron, i.e. the parton distribution functions ff (x,q

2) .
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Main Points of Lecture 3 - Cont.

I In DIS the long-distance contributions do not cancel (no sum
over degenerate initial states).

p p

q q

I We therefore cannot calculate the parton distribution functions
ff (x,q2) in perturbation theory.

I We can however, calculate the behaviour with q2 (at large q2) -
Scaling Violations.
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Main Points of Lecture 3 - Cont.

p1

p2

x1p1

x2p2
} Y

I In hadron-hadron hard-scattering collisions, such as
h1 +h2 → Y +X, where for example, Y can be a heavy particle
(resonance, Higgs, i.e. Drell-Yan Processes) or two (or more)
jets at large transverse momentum.

σ(h1(p1)+h2(p2) → Y +X) =∫ 1

0
dx1

∫ 1

0
dx2 ∑

f1,f2

ff1(x1,Q
2)ff2(x2,Q

2)σ(f1 + f2 → Y + anything) .
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The Discrete Symmetries P,C and CP

Parity
(~x, t) → (−~x, t).

The vector and axial-vector fields transform as:

Vµ (~x, t) → Vµ (−~x, t) and Aµ (~x, t) →−Aµ (−~x, t).

I The vector and axial-vector currents transform similarly.

Left-handed components of fermions ψL = ( 1
2(1−γ5)ψ) transform into

right-handed ones ψR = ( 1
2(1+γ5)ψ), and vice-versa.

I Since CC weak interactions in the SM only involve the left-handed
components, parity is not a good symmetry of the weak force.

I QCD and QED are invariant under parity transformations.
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Charge Conjugation – Charge conjugation is a transformation which relates
each complex field φ with φ†.

Under C the currents transform as follows:

ψ̄1γµψ2 →−ψ̄2γµψ1 and ψ̄1γµγ5ψ2 → ψ̄2γµγ5ψ1,

where ψi represents a spinor field of type (flavour or lepton species) i.

CP – Under the combined CP-transformation, the currents transform as:

ψ̄1γµψ2 →−ψ̄2γµψ1 and ψ̄1γµγ5ψ2 →−ψ̄2γµγ5ψ1.

The fields on the left (right) hand side are evaluated at (~x, t) ( (−~x, t) ).
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CP Cont.

Consider now a charged current interaction:

(W1
µ − iW2

µ ) Ūiγµ (1−γ5)VijD
j +(W1

µ + iW2
µ ) D̄jγµ (1−γ5)V∗

ijU
i,

Ui and Dj are up and down type quarks of flavours i and j respectively.

Under a CP transformation, the interaction term transforms to:

(W1
µ + iW2

µ ) D̄jγµ (1−γ5)VijU
i +(W1

µ − iW2
µ ) Ūiγµ (1−γ5)V∗

ijD
j

I CP-invariance requires V to be real
(or more strictly that any phases must be able to be absorbed into the
definition of the quark fields).

I For CP-violation in the quark sector we therefore require 3 generations.
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Higgs Mass and Interactions

Imagine that the Higgs potential is

V =−µ2 (φ†φ)+λ (φ†φ)2 and write φ =

(

0
1√
2
(v+h(x))

)

where v2 =
µ2

λ
.

In terms of h(x):

V = µ2 h2 +
√

λ µ h3 +
λ
4

h4 .

I We know v = µ/
√

λ = 250GeV from MW and other quantities.

I The mass of the Higgs is
√

2µ. Today, we have no direct way of knowing
this.

I The larger that mh is, the stronger are the Higgs self interactions.

I Finally, I stress that even if the overall picture is correct, the Higgs sector
may be more complicated than the simplest picture presented here.
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Lecture 4 — Flavourdynamics and Non-Perturbative QCD

1. Introduction

2. Leptonic Decays

3. Introduction to Lattice Phenomenology

4. HQET (Heavy Quark Effective Theory)

5. Semileptonic Decays
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The CKM Matrix
I The charged-current interactions are of the form

J+
µ = (ū, c̄, t̄ )Lγµ VCKM





d
s
b





L

,

I 2005 Particle Data Group summary for the magnitudes of the entries:




0.9739−0.9751 0.221−0.227 0.0029−0.0045
0.221−0.227 0.9730−0.9744 0.039−0.044
0.0048−0.014 0.037−0.043 0.9990−0.9992



 .

I The Wolfenstein parametrization is

VCKM =















1− λ 2

2 λ Aλ 3(ρ̄ − iη̄ )

−λ 1− λ 2

2 Aλ 2

Aλ 3(1− ρ̄ − iη̄ ) −Aλ 2 1















.
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Exploring the Limits of the Standard Model

I A central approach to seeking evidence for physics Beyond the
Standard Model is to over-determine ρ̄ and η̄ and check for consistency.

I For processes dominated by loop-effects (penguins, boxes etc) in
particular, new BSM particles would contribute to the amplitudes
⇒ SM predictions would be wrong
⇒ inconsistencies. The major difficulty in this approach is our inability to
control non-perturbative QCD effects to sufficient precision.

For most quantities, the uncertainties are dominated by theory.
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Exploring the Limits of the Standard Model

I A central approach to seeking evidence for physics Beyond the
Standard Model is to over-determine ρ̄ and η̄ and check for consistency.

I For processes dominated by loop-effects (penguins, boxes etc) in
particular, new BSM particles would contribute to the amplitudes
⇒ SM predictions would be wrong
⇒ inconsistencies. The major difficulty in this approach is our inability to
control non-perturbative QCD effects to sufficient precision.

For most quantities, the uncertainties are dominated by theory.

I For the remainder of these lectures I will illustrate the determination of
the CKM matrix elements.
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Leptonic Decays of Mesons

I The difficulty in making predictions for weak decays of hadrons is in
controlling the non-perturbative strong interaction effects.

I As a particularly simple example consider the leptonic decays of
pseudoscalar mesons in general and of the B-meson in particular.

B−

b

ū

l−

ν̄

W

I Non-perturbative QCD effects are contained in the matrix element

〈0|b̄γµ (1−γ5)u |B(p)〉 .

I Lorentz Inv. + Parity ⇒ 〈0|b̄γµ u |B(p)〉 = 0.
I Similarly 〈0|b̄γµγ5u |B(p)〉 = ifBpµ .

All QCD effects are contained in a single constant, fB, the B-meson’s
(leptonic) decay constant. (fπ ' 132MeV)
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Leptonic Decays of Mesons Cont.

2006 Result from Belle:

B(B → τντ ) =
(

1.06+0.34
−0.28(stat.)+0.18

−0.16(syst.)
)

×10−4 . (hep-ex/0604018)

B−

b

ū

τ

ντ

W

B(B → τντ ) = f 2
B |Vub|2

G2
FmBm2

τ
8π

(

1− m2
τ

m2
B

)2

τB .

Thus the measurement of the branching ratio gives us information about
fB|Vub| ⇒ in order to determine Vub we need to know fB ⇒ requires
non-perturbative QCD.
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Introduction to Lattice Phenomenology

I Lattice phenomenology starts with the evaluation of correlation functions
of the form:

〈0|O(x1,x2, · · · ,xn) |0〉=
1
Z

∫
[dAµ ] [dψ] [dψ̄]eiS O(x1,x2, · · · ,xn) ,

where O(x1,x2, · · · ,xn) is a multilocal operator composed of quark and
gluon fields and Z is the partition function:

Z =
∫

[dAµ ] [dψ] [dψ̄]eiS .

I These formulae are written in Minkowski space, whereas Lattice
calculations are performed in Euclidean space (exp(iS) → exp(−S) etc.).

I The physics which can be studied depends on the choice of the
multilocal operator O.

I The functional integral is performed by discretising space-time and using
Monte-Carlo Integration.
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Two-Point Correlation Functions

Consider two-point correlation functions of the form:

C2(t) =
∫

d3x ei~p·~x 〈0|J(~x, t)J†(~0,0)|0〉 ,

where J and J† are any interpolating operators for the hadron H which we
wish to study and the time t is taken to be positive.

I We assume that H is the lightest hadron which can be created by J†.

I We take t > 0, but it should be remembered that lattice simulations are
frequently performed on periodic lattices, so that both time-orderings
contribute.

Standard Model SUSSP61, Lecture 4, 14th August 2006



Lecture 3 Summary Discrete Symmetries Introduction Leptonic Decays Lattice Phenomenology HQET Semileptonic Decays

Two-Point Correlation Functions (Cont.)

C2(t) =
∫

d3x ei~p·~x 〈0|J(~x, t)J†(~0,0)|0〉 ,

Inserting a complete set of states {|n〉}:

C2(t) = ∑
n

∫
d3x ei~p·~x 〈0|J(~x, t) |n〉 〈n|J†(~0,0)|0〉

=
∫

d3x ei~p·~x 〈0|J(~x, t) |H〉 〈H|J†(~0,0)|0〉+ · · ·

where the · · · represent contributions from heavier states with the same
quantum numbers as H.

Finally using translational invariance:

C2(t) =
1

2E
e−iEt

∣

∣

∣

∣

〈0|J(~0,0)|H(p)〉
∣

∣

∣

∣

2

+ · · · ,

where E =
√

m2
H +~p2.
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Two-Point Correlation Functions (Cont.)

C2(t) =
1

2E
e−iEt

∣

∣

∣

∣

〈0|J(~0,0)|H(p)〉
∣

∣

∣

∣

2

+ · · · .

H

0 t

I In Euclidean space exp(−iEt) → exp(−Et).
I By fitting C(t) to the form above, both the energy (or, if~p = 0, the mass)

and the modulus of the matrix element
∣

∣〈0|J(~0,0)|H(p)〉
∣

∣

can be evaluated.
I Example: if J = ūγµγ5d then the decay constant of the π-meson can be

evaluated,
∣

∣〈0|ūγµγ5d |π+(p)〉
∣

∣= fπ pµ ,

(the physical value of fπ ' is 132 MeV).
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Effective Masses
At zero momentum

C2(t) = Constant× e−mt

so that it is sensible to define the effective mass

meff(t) = log

(

C(t)
C(t +1)

)

.

0 5 10 15
t

0.25

0.3

0.35

0.4

0.45

0.5
<P(t)P(0)>

GG_GG
GL_GL
LL_GG
LL_GL
LL_LG
LL_LL

Effective Mass Plot for a Pseudoscalar Meson. UKQCD Collaboration.
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Three-Point Correlation Functions

Consider now a three-point correlation function of the form:

C3(tx, ty) =
∫

d3xd3y ei~p·~x ei~q·~y 〈0|J2(~x, tx)O(~y, ty)J†
1(~0,0)|0〉 ,

where J1,2 may be interpolating operators for different particles and we
assume that tx > ty > 0.

H1 H2

0 ty tx

For sufficiently large times ty and tx − ty

C3(tx, ty) ' e−E1ty

2E1

e−E2(tx−ty)

2E2
〈0|J2(0)|H2(~p)〉

×〈H2(~p)|O(0)|H1(~p+~q)〉 〈H1(~p+~q)|J†
1(0)|0〉 ,

where E2
1 = m2

1 +(~p+~q)2 and E2
2 = m2

1 +~p2.
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Three-Point Correlation Functions

H1 H2

0 ty tx

I From the evaluation of two-point functions we have the masses and the
matrix elements of the form |〈0|J|H(~p)〉|. Thus, from the evaluation of
three-point functions we obtain matrix elements of the form |〈H2|O|H1〉|.

I Important examples include:

I K0 – K̄0 (B0 – B̄0) mixing. In this case

O = s̄γµ (1−γ5)d s̄γµ (1−γ5)d .

I Semileptonic and rare radiative decays of hadrons of the form
B → π, ρ + leptons or B → K∗γ. Now O is a quark bilinear operator
such as b̄γµ (1−γ5)u or an electroweak penguin operator.
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Systematic Uncertainties
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a

L

We would like
L � 1fm and a−1 � ΛQCD .
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Systematic Uncertainties (Cont.)

I Computing resources limit the number of lattice points which can be
included, and hence the precision of the calculation.
Typically in full QCD we can have about 24 – 32 points in each spatial
direction and so compromises have to be made.

I Statistical Errors: The functional integral is evaluated by Monte-Carlo
sampling. The statistical error is estimated from the fluctuations of
computed quantities within different clusters of configurations.

I The different sources of systematic uncertainty are not independent of
each other, so the following discussion is oversimplified.
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Systematic Uncertainties (Cont.)

I Discretization Errors (Lattice Artefacts) : Current simulations are
typically performed with

a ∼ (0.05− .125) fm (0.1fm' 2GeV)

leading to errors of O(aΛQCD) (with Wilson Fermions) or O(a2Λ2
QCD) for

improved fermion actions.
The errors can be estimated and reduced by:

I Performing simulations at several values of a and extrapolating to
a = 0.

I Improvement (Symanzik), i.e. choosing a discretization of QCD so
that the errors are formally smaller.

f ′(x) =
f (x+a)− f (x)

a
+ O(a) or f ′(x) =

f (x+a)− f (x−a)

2a
+ O(a2) .

For example, in this way it is possible to reduce the errors from
O(a) for Wilson fermions to ones of O(a2) by the addition of
irrelevant operators.
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Systematic Uncertainties (Cont.)
I Chiral Extrapolations: Simulations are performed with unphysically

heavy u and d quarks and the results are then extrapolated to the chiral
limit.
Wherever possible, we use χPT to guide the extrapolation, but it is still
very rare to observe chiral logarithms.
Today, in general, the most significant source of systematic uncertainty
is due to the chiral extrapolation.

mq/ms mπ (MeV) mπ/mρ
SU(3) Limit 1 690 0.68

Currently Typical 1/2 490 0.55
Impressive 1/4 340 0.42

MILC 1/8 240 0.31
Physical 1/25 140 0.18

For this reason the results obtained using the MILC Collaboration (using
Staggered lattice fermions) have received considerable attention.
Gradually the challenge set by the MILC Collaboration is being taken up
by groups using other formulations of lattice fermions (e.g. Improved
Wilson, Twisted Mass, Domain Wall, Overlap).

I ρ → ππdecays have not been achieved on the lattice up to now.
Standard Model SUSSP61, Lecture 4, 14th August 2006
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Systematic Uncertainties (Cont.)

I Finite Volume Effects: For the quantities described above the
finite-volume errors fall exponentially with the volume, e.g.

fπ±(L)− fπ±(∞)

fπ±(∞)
'−6m2

π
f 2
π

e−mπL

(2πmπL)3/2
.

Generally these uncertainties are small at the light-quark masses which
can be simulated.

I For two-particle states (e.g. K → ππdecays) the finite-volume
effects decrease as inverse powers of L, and must be removed.

I Renormalization of Lattice Operators: From the matrix elements of
the bare operators computed in lattice simulations we need to determine
matrix elements of operators renormalized in some standard
renormalization scheme (such as MS).

I For sufficiently large a−1 this can be done in perturbation theory,
but lattice perturbation theory frequently has large coefficients ⇒
large uncertainties (O(10%)).

I Non-perturbative renormalization is possible and frequently
implemented, eliminating the need for lattice perturbation theory.
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Old and New Compilations of fB and ξ

I “B-Decays from Lattice QCD”, CTS in B-Decays (1994, ed. S.Stone):
fB = 180±40MeV and fD = 200±30MeV) .

I ”Heavy Quark Physics from Lattice QCD” J.M.Flynn & CTS in Heavy
Flavours II (1998, ed. A.J.Buras and M.Lindner):

I fB ( fB = 170±35MeV and fD = 200±30MeV) .
I ξ = fBs

√

BBs/fBd

√

BBd = 1.14(8) .

I S.Hashimoto (ICHEP - 2004)

fB = 189±27MeV and ξ = 1.23(6).

I C.Davies (EPS - 2005)

fB = 216±22MeV
fBs

fBd

= 1.20(3).

The Davies’ results are from a single calculation .
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New Experimental Results and Lattice QCD

G.Martinelli (for UTfit Collaboration) - Ringberg April 2006

• Belle(2006) B(B−

→ τ−ν̄τ ) = (1.06+0.34
−0.28(syst)+0.18

−0.16(stat))×10−4

⇒ fB = 201±39MeV (Vub = (38.0±2.7±4.7)10−4 from exclusive decays)

or fB = 173±30MeV (Vub = (43.9±2.0±2.7)10−4 from inclusive decays)

or fB = 180±31MeV (combined inclusive + exclusive) .

• CDF (2006) ∆mS = (17.33+.42
−.21(stat)±0.07syst)ps−1

⇒ ξ = 1.15±0.08 (Vub exclusive)

or ξ = 1.05±0.10 (Vub inclusive)

or ξ = 1.06±0.09 (Vub combined)
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The Heavy Quark Effective Theory - HQET
I B-physics is playing a central rôle in flavourdynamics and it is useful to

exploit the symmetries which arise when mQ � ΛQCD.
I The Heavy Quark Effective Theory (HQET) is proving invaluable in the

study of heavy quark physics.
I For scales � mQ the physics in HQET is the same as in QCD.
I For scales O(mQ) and greater, the physics is different, but can be

matched onto QCD using perturbation theory.
I The non-perturbative physics in the same in the HQET as in QCD.

Consider the propagator of a (free) heavy quark:
p

= i 6p+m
p2−m2

Q+iε .

• If the momentum of the quark p is not far from its mass shell,

pµ = mQvµ + kµ ,

where |kµ | � mQ and vµ is the (relativistic) four velocity of the hadron
containing the heavy quark (v2 = 1), then

p
= i 1+ 6v

2
1

v·k+iε +O
( |kµ |

mQ

)

.
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HQET Cont.

p
= i 1+ 6v

2
1

v·k+iε +O
( |kµ |

mQ

)

.

I (1+ 6 v)/2 is a projection operator, projecting out the large components of
the spinors.

I This propagator can be obtained from the gauge-invariant action

LHQET = h̄(iv ·D)
1+ 6 v

2
h

where h is the spinor field of the heavy quark.

I LHQET is independent of mQ, which implies the existence of symmetries
relating physical quantities corresponding to different heavy quarks (in
practice the b and c quarks or Scaling Laws).

I The light degrees of freedom are also not sensitive to the spin of the
heavy quark, which leads to a spin-symmetry relating physical
properties of heavy hadrons of different spins.
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Spin Symmetry in the HQET
• Consider, for example, the correlation function:

∫
d3x〈0|JH(x)J†

H(0)|0〉,
I J†

H and JH are interpolating operators which can create or annihilate a
heavy hadron H.

I Here I take H to be a pseudoscalar or vector meson.
I The hadron is produced at rest, with four velocity v = (1,~0).
I For example take JH = h̄γ5q for the pseudoscalar meson and JH = h̄γiq

(i = 1,2,3) for the vector meson. This means that the correlation function
will be identical in the two cases except for the factor

γ5 1+γ0

2
γ5 =

1−γ0

2

when H is a pseudoscalar meson, and

γi 1+γ0

2
γi = −3

1−γ0

2

when it is a vector meson.
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Spin Symmetry Cont.

I Correlation functions ∼ exp(−iMH t) ⇒ the pseudoscalar and vector
mesons are degenerate (up to relative corrections of O(Λ2

QCD/mQ)):

MP = MV +O(Λ2
QCD/mQ) .

(or M2
V −M2

P = constant.)

I Heavy quark scaling laws (e.g. fP ∼ 1/
√

MP) can be derived similarly.

I NRQCD is a useful effective theory in studying the physics of heavy
quarkonia.
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Determination of Vcb and Vub

• These can be determined from either inclusive or exclusive decays. I start
with a discussion of exclusive decays.

B D, D∗, π, ρ

b c,u

q̄

V−A

• Space-Time symmetries allow us to parametrise the non-perturbative
strong interaction effects in terms of invariant form-factors. For example, for
decays into a pseudoscalar meson P (= π,D for example)

〈P(k)|Vµ |B(p)〉 = f +(q2)

[

(p+ k)µ − m2
B −m2

P

q2 qµ

]

+ f 0(q2)
m2

B −m2
P

q2 qµ ,

where q = p− k.
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Determination of Vcb and Vub Cont.

B D, D∗, π, ρ

b c,u

q̄

V−A

• For decays into a vector V (= ρ,D∗ for example), a conventional
decomposition is

〈V(k,ε)|Vµ |B(p)〉 =
2V(q2)

mB +mV
εµγδβε∗β pγkδ

〈V(k,ε)|Aµ |B(p)〉 = i(mB+mV)A1(q
2)ε∗µ − i

A2(q
2)

mB+mV
ε∗·p(p+k)µ + i

A(q2)

q2 2mVε∗·pqµ ,

where ε is the polarization vector of the final-state meson, and q = p−k.

{A3 =
mB +mV

2mV
A1−

mB −mV

2mV
A2 .}
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B → D(∗) Semileptonic Decays

B D, D∗

leptons

b c

⇒ Vcb

I For B → D∗ decays

dΓ
dω

=
G2

F

48π3 (mB−mD∗)2m3
D∗

√

ω2−1(ω+1)2×
[

1+
4ω

ω+1
m2

B −2ωmBmD∗ +m2
D∗

(mB −mD∗)2

]

|Vcb|2F
2(ω) ,

where F (ω) is the IW-function combined with perturbative and power
corrections. (ω = vB · vD∗ )

I F (1) = 1 up to power corrections and calculable perturbative
corrections.
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B → D(∗) Semileptonic Decays Cont.

I To determine the difference of F (1) from 1, the method of double ratios
is used. Hashimoto, Kronfeld, Mackenzie, Ryan & Simone (1998)

For example

R+ =
〈D|c̄γ4b|B̄〉〈B̄|b̄γ4c|D〉
〈D|c̄γ4c|D〉〈B̄|b̄γ4b|B̄〉 = |h+(1)|2

with

h+(1) = ηV

{

1− `P

(

1
2mc

− 1
2mb

)2
}

.

By calculating R+ and similar ratios of V ↔ P and V ↔ V matrix
elements all three `’s can be determined.

I A recent result from the FNAL/MILC/HPQCD Collaborations gives

|Vcb| = 3.9(1)(3)×10−2 .

M.Okamoto, hep-lat/0412044

I Form Factors for D → π, K semileptonic decays are also being
evaluated.
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Vcb from Inclusive Decays

I Vcb is obtained from total semileptonic rate, and from lepton energy and
hadronic mass spectra.

I The main tool is the OPE ⇒ expansion in inverse powers of mb,mc .

Γ = |Vcb|2 Γ̂0m5
b(µ)(1+AEW)Apert(r,µ)

{

z0 +
z2(r)

m2
b

+
z3(r)

m3
b

+ · · ·
}

where r = mc/mb and the z’s are known functions depending on
non-perturbative parameters which are determined from the spectra.

I It is difficult to quantify any violations of quark-hadron duality.

PDG(2006) Summary:

|Vcb| = (41.7±0.7)10−3 (inclusive); |Vcb| = (40.9±1.8)10−3 (exclusive)
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B → π Exclusive Semileptonic Decays from the Lattice

B π

leptons

b u

⇒ Vub

I For exclusive decays we require the form factors and the HQET is
significantly less help here. This is the principle uncertainty.

I Small lattice artefacts ⇒ momentum of the pion must be small
⇒ we obtain form factors at large q2.
There is a proposal to eliminate this constraint by using a formulation in
which the B-meson is moving. A.Dougall et al., hep-lat/0509108

I Experimental results in q2 bins together with theoretical constraints,
helps one use the lattice data to obtain Vub precisely.

I.Stewart LP2005, T.Becher & R.Hill hep-lat/0509090
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Recent Results for B → π Form Factors

Courtesy of T.Onogi, Chamonix Flavour Dynamics Workshop, October 2005

HPQCD Staggered Light & NRQCD Heavy |Vub| = 4.04(20)(44)(53)×10−3

FNAL/MILC Staggered Light & Fermilab Heavy |Vub| = 3.48(29)(38)(47)×10−3
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Vub I Vub is also determined from inclusive decays B̄ → Xu`ν̄` using the
heavy-quark expansion.

I The difficulty is to remove the backgrounds from the larger B̄ → Xc`ν̄`

decays.

I If this is done by going towards the end-point so that b → c decays are
not possible, then we need non-perturbative input (the shape function)
⇒ limited precision.

PDG(2006) Summary:

|Vub|= (4.40±0.2±0.27)10−3 (inclusive); |Vub|=(3.84+0.67
−0.49)10−3 (exclusive)

I The theoretical uncertainties in the inclusive and exclusive
determinations of Vcb and Vub are very different and it is reassuring that
the results are consistent.

I In terms of the Wolfenstein parameters:

|Vub|2 = A2λ 6 (ρ̄2 + η̄ 2) .
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PDG2006 Unitarity Triangle
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