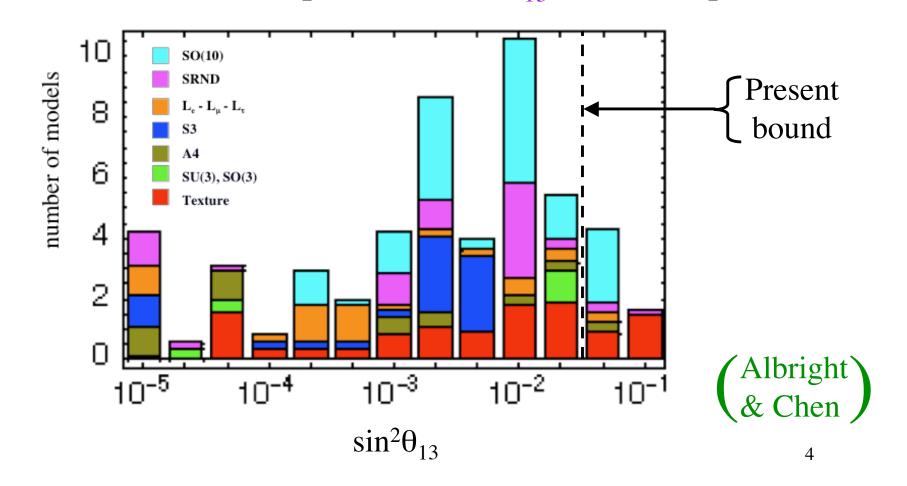

Neutrino

Phenomenology

Boris Kayser Scottish Summer School August 11, 2006 +

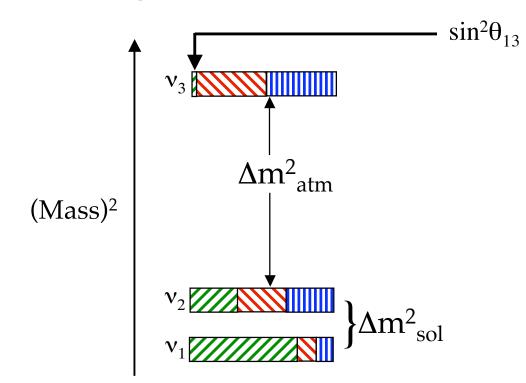
Are There Sterile Neutrinos?


Rapid neutrino oscillation reported by LSND —

Is the so-far unconfirmed oscillation reported by LSND genuine?

MiniBooNE aims to definitively answer this question.

What Is the Pattern of Mixing? >How large is the small mixing angle θ_{13} ? We know only that $\sin^2\theta_{13} < 0.032$ (at 2σ). The theoretical prediction of θ_{13} is not sharp:


The Central Role of θ_{13}

Both CP violation and our ability to tell whether the spectrum is normal or inverted depend on θ_{13} .

If $\sin^2\theta_{13} > (0.0025 - 0.0050)$, we can study both of these issues with intense but conventional v and \overline{v} beams.

Determining θ_{13} is an important stepping-stone.

How θ_{13} May Be Measured

 $\sin^2 \theta_{13} = |U_{e3}|^2$ is the small v_e piece of v_3 . v_3 is at one end of Δm_{atm}^2 .

: We need an experiment with L/E sensitive to Δm_{atm}^2 (L/E ~ 500 km/GeV), and involving v_e .

Complementary Approaches

Reactor Experiments

Reactor \bar{v}_{e} disappearance while traveling L ~ 1.5 km. This process depends on θ_{13} alone:

 $P(\overline{v}_e \text{ Disappearance}) =$

 $= \frac{\sin^2 2\theta_{13}}{\sin^2 [1.27\Delta m_{atm}^2 (eV^2) L(km)/E(GeV)]}$

Accelerator Experiments

Accelerator $v_{\mu} \rightarrow v_{e}$ while traveling L > Several hundred km. This process depends on θ_{13} , θ_{23} , on whether the spectrum is normal or inverted, and on whether CP is violated through the phase δ . Neglecting matter effects (to keep the formula from getting too complicated):

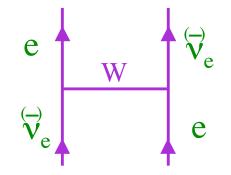
The accelerator long-baseline $\mathbf{v}_{e}^{(-)}$ appearance experiment measures —

$$P[v_{\mu}^{(-)} \rightarrow v_{e}^{(-)}] \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \Delta_{31} + \sin 2\theta_{13} \cos \theta_{13} \sin 2\theta_{23} \sin 2\theta_{12} \sin \Delta_{31} \sin \Delta_{21} \cos(\Delta_{32} \pm \delta) + \sin^{2} 2\theta_{12} \cos^{2} \theta_{23} \cos^{2} \theta_{13} \sin^{2} \Delta_{21}$$

$$\Delta_{ij} = \Delta m_{ij}^2 L/4E$$

The plus (minus) sign is for neutrinos (antineutrinos).

The Mass Spectrum: \equiv or \equiv ?


Generically, grand unified models (GUTS) favor —

GUTS relate the Leptons to the Quarks.

is un-quark-like, and would probably involve a lepton symmetry with no quark analogue.

How To Determine If The Spectrum Is Normal Or Inverted

Exploit the fact that, in matter,

raises the effective mass of v_e , and lowers that of $\bar{v_e}$.

This changes both the spectrum and the mixing angles.

Matter effects grow with energy E. At E ~ 1 GeV, matter effects \Rightarrow $\sin^2 2^{(\overline{\theta}_M)} \cong \sin^2 2\theta_{13} [1 \stackrel{+}{\longrightarrow} S \frac{E}{6 \text{ GeV}}].$ Sign[m²(__) - m²(__)]

At oscillation maximum,

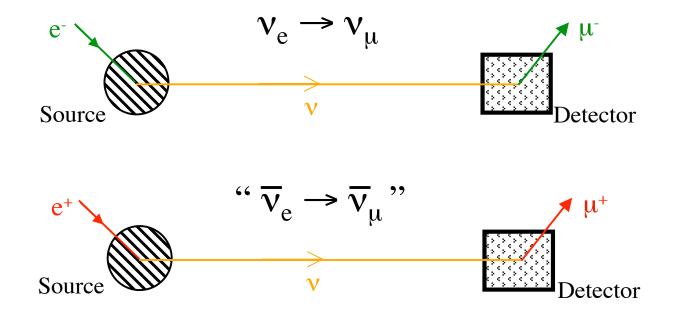
$$\frac{P(\nu_{\mu} \rightarrow \nu_{e})}{P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})} \begin{cases} >1 ; \\ <1 ; \\ \end{cases}$$

Note fake CP violation.

In addition,

$$\frac{P_{\text{Hi} E}(\nu_{\mu} \rightarrow \nu_{e})}{P_{\text{Lo} E}(\nu_{\mu} \rightarrow \nu_{e})} \begin{cases} >1 ; \\ <1 ; \end{cases}$$

(Mena, Minakata, Nunokawa, Parke)


CP Violation and the Matter-Antimatter Asymmetry of the Universe

Leptonic CP Violation

Is there leptonic QP, or is QP special to quarks?
 Is leptonic QP, through *Leptogenesis*, the origin of the MATTER-antimatter asymmetry of the universe?

How To Search for Leptonic \mathcal{CP} Look for $P(\overline{v}_{\alpha} \rightarrow \overline{v}_{\beta}) \neq P(v_{\alpha} \rightarrow v_{\beta})$

" $\overline{\nu}_{\alpha} \rightarrow \overline{\nu}_{\beta}$ " is a different process from $\nu_{\alpha} \rightarrow \nu_{\beta}$ even when $\overline{\nu}_{i} = \nu_{i}$

CPT:
$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = P(\overline{\nu}_{\beta} \rightarrow \overline{\nu}_{\alpha})$$

 $\therefore P(\nu_{\alpha} \rightarrow \nu_{\alpha}) = P(\overline{\nu}_{\alpha} \rightarrow \overline{\nu}_{\alpha})$

No CP violation in a *disappearance* experiment.

But if
$$\delta$$
 is present, $P(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e}) \neq P(\overline{\mathbf{v}}_{\mu} \rightarrow \overline{\mathbf{v}}_{e})$:

$$P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) - P(\nu_{\mu} \rightarrow \nu_{e}) = 2\cos\theta_{13}\sin2\theta_{13}\sin2\theta_{12}\sin2\theta_{23}\sin\delta$$
$$\times \sin\left(\Delta m^{2}_{31}\frac{L}{4E}\right)\sin\left(\Delta m^{2}_{32}\frac{L}{4E}\right)\sin\left(\Delta m^{2}_{21}\frac{L}{4E}\right)$$

Note that all mixing angles must be nonzero for \mathcal{CP} .

Separating CP From the Matter Effect

Genuine \mathcal{P} and the matter effect both lead to a difference between v and \overline{v} oscillation.

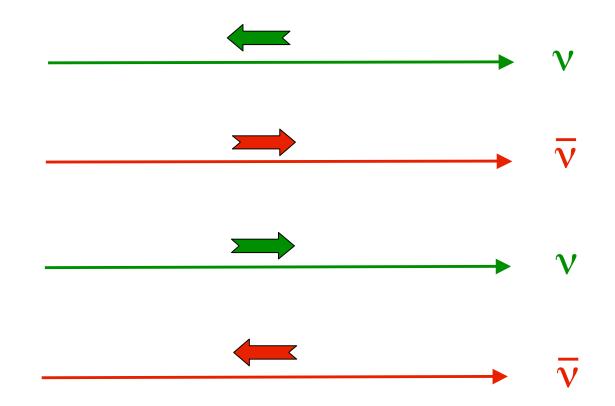
But genuine \mathcal{P} and the matter effect depend quite differently from each other on L and E.

To disentangle them, one may make oscillation measurements at different L and/or E.

What Physics Is Behind Neutrino Mass?

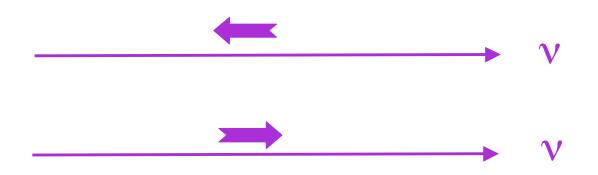
The See-Saw Mechanism — A Summary —

This assumes that a neutrino has *both* a Majorana mass term $m_R \overline{v_R}^c v_R$ and a Dirac mass term $m_D \overline{v_L} v_R$.


No SM principle prevents m_R from being extremely large.

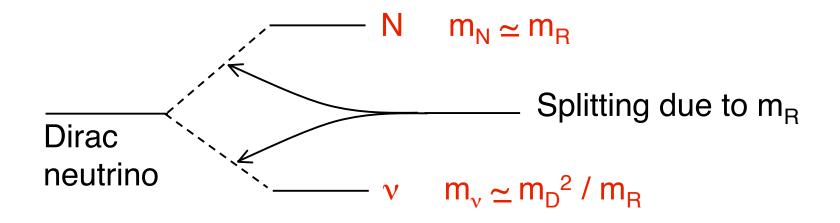
But we expect m_D to be of the same order as the masses of the quarks and charged leptons.

Thus, we assume that $m_R >> m_D$.


We have 4 mass-degenerate states:

This collection of 4 states is a Dirac neutrino plus its antineutrino.

When $\overline{\mathbf{v}} = \mathbf{v}$


We have only 2 mass-degenerate states:

This collection of 2 states is a Majorana neutrino.

What Happens In the See-Saw?

The Majorana mass term splits a *Dirac* neutrino into two *Majorana* neutrinos.

Note that $m_v m_N \sim m_D^2 \sim m_{q \text{ or } l}^2$. See-Saw Relation

The See-Saw Relation

Predictions of the See-Saw

- Each $\bar{\mathbf{v}}_i = \mathbf{v}_i$ (Majorana neutrinos)
- The light neutrinos have heavy partners N How heavy?? $m_N \sim \frac{m_{top}^2}{m_v} \sim \frac{m_{top}^2}{0.05 \text{ eV}} \sim 10^{15} \text{ GeV}$

Near the GUT scale.

Coincidence??

A Possible Consequence of the See-Saw – *Leptogenesis*

The heavy see-saw partners N would have been made in the hot Big Bang.

Then, being very heavy, they would have decayed.

The see-saw model predicts —

 $N \rightarrow \ell^- + \dots$ and $N \rightarrow \ell^+ + \dots$

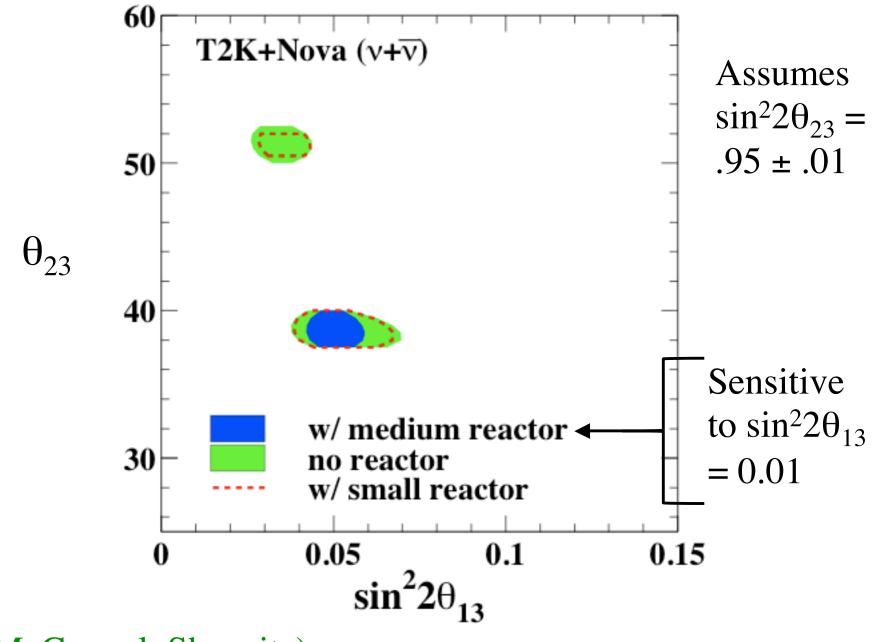
If there was \mathcal{LP} in these leptonic processes, then unequal numbers of leptons and antileptons would have been produced.

Perhaps this was the origin of today's **matter-antimatter** asymmetry.

Enjoy The Rest Of The School!

Backup Slides

 \succ What is the atmospheric mixing angle θ_{23} ?


$$P[v_{\mu} \rightarrow \text{Not } v_{\mu}] \cong \sin^2 2\theta_{23} \sin^2 \Delta_{atm}$$

Here Δ_{atm} lies between the (very nearly equal) Δ_{31} and Δ_{32} .

This measurement determines $\sin^2 2\theta_{23}$, but if $\theta_{23} \neq 45^\circ$, there are two solutions for θ_{23} :

 θ_{23} and $90^{\circ} - \theta_{23}$.

A reactor experiment may be able to resolve this ambiguity.

(McConnel, Shaevitz)