4 - ' ¥ :
Jue VVazquez-Semadeni

-J/

NS tltyto.de Radioastronomifa y Astrofisica, UNAM )&

UNIVERSIDAD NACIONA
AUTONOMA DE MEXICO

IRVA




Collaborators:

Javier Ballesteros-Paredes. Postdocs:
Pedro Colin Alejandro Gonzalez-Samaniego

Gilberto Gomez Manuel Zamora-Avilés



 Qutline:

— The Hierarchical Gravitational Contraction (HGC) paradigm
for star-forming GMCs.

— Hoyle fragmentation revisited.
« Overcoming old objections.
« Approximate timescales for collapse of density fluctuations.
» Implications.



I. The Hierarchical

Gravitational Contraction
Paradigm



Mounting observational evidence that MCs are collapsing globally
and on multiple scales (0.01 — several pc), along filaments.
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Colliding-flow MC formation simulation (Gémez & VS 2014, ApJ, 791, 124; lwasaki san’s talk)
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— Dispelling the notion that MCs are “unbound”. A study of clump energy
budget in simulation of turbulent assembly of MCs (Camacho+16, ApJ, 833,
113):

« At low %, inertial motions dominate, but in ~1/2 of the cases, they are
assemblingthe clumps (measured by <div v> in the clumps).

Camacho+16, ApJ, 833, 113 Compare to Leroy+15
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— Turbulent velocities are largest at the largest scales.

= Don’'t act as isotropic pressure, but as sfreams (pistons,
shear).

 Tidal stretching looks like local expansion!

— Inward motions may come from gravitational instability at a
larger scale (i.e., spiral arms).

— So, need to take into account weight of the CNM and CO-dark
gas to determine binding.



e The HGC scenario:

— Arose from the observed evolution of simulations of MC formation
with self-gravity (vs+07, ApJ, 657, 870).

— Solar-neighborhood-type clouds form by compression-triggered
phase transition WNM > CNM (Hennebelle & Perault 99; Koyama & Inutsuka
02; Heitsch+05; VS+06).

* (Converging flows, NOT cloud-cloud collisions. Cloud “boundaries” are
fake, due to tracers (Sarah’s talk).)

— Jeans mass drops precipitously (x10%) by cooling/compression and
cloud begins to collapse (vs+07; Gomez & Vs 14).

 Turbulence is only moderately supersonic. Not enough to prevent
collapse, just a population of moderate fluctuations.

» Clouds quickly acquire many Jeans masses.

— Collapse is mulfi-scale. small-scale collapses within and falling into
larger-scale ones (vs+09, ApJ, 707, 1023).

— Massive star-forming regions consist of mergers of low-mass regions
occurring at late evolutionary stages.



Gravitational contraction
starts at the largest
scales.

Small-scale collapses
within large-scale ones
develop sequentially.

Small-scale objects
terminate their collapse
first because of their
shorter free-fall times.

Similar to Hoyle's (1953)
fragmentation, but with
nonlinear fluctuations and
filament formation.




» Filaments form spontaneoulsy (Gémez & VS 14, ApJ, 791, 124):
— Because the clouds contain many Jeans masses...

— ... the collapse is nearly pressureless...
— ... and proceeds first along shortest scales (Lin+65):
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SPH simulation with no
feedback (GV14).

Fragmentation occurs
along filaments as they
feed central objects.
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I11. Hoyle Fragmentation
Revisited

(VS+18, In prep.)
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« Hoyle fragmentation (Hoyle, 1953, ApJ, 118, 513):

— In particular, for isothermal flows, M, decreases with
Increasing density.

= As an isothermal cloud contracts gravitationally, it contains ever
more Jeans masses > fragmeniation.

— The mechanism was criticized by Tohline (1980):

 For spherical clouds just over the Jeans mass with linear
fluctuations, the fastest-growing modes are the largest scales.

=» Large-scale collapse should overwhelm small-scale one.
=> No fragmentation

13



« Hoyle fragmentation in realistic MCs (VS+18, in prep.):
— Actual MCs:

 Are not spherical. Likely sheet-like, because their formation
requires collisions of streams (Bally+87; Heiles & Troland 03; VS+06, ApJ,
643, 245).

» Contain many Jeans masses.

— Guszejnov+18: Number of Jeans masses determines fragmentation,
not turbulent Mach number.

» Contain nonlinear, turbulent density fluctuations.
— Distribution of density fluctuations =» distribution of free-fall times.

_ Projected cloud shape
) 3 and distribution of free-
_ fall times in a colliding-
stream simulation of
- MC formation (Heitsch &
) Hartmann 2008).
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— As the MC contracts, the average Jeans mass within it
decreases.

 However, must consider the Jeans mass at the density of the
typical (rms) turbulent fluctuation, of amplitude p,/p, ~ M.

— Can estimate the evolution of the Jeans mass at the density of
the typical density fluctuation in spherical geometry:

» The evolution of the radius of a uniform-density collapsing sphere
can be approximated by (Girichidis+14)

R(T) = Ro(l — £9)%/3

where t = t/ts(py), and a = 1.8614 is a parameter for which the fit
remains within 0.5% of the actual free-fall solution.
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— From here, assuming constant mass, the mean density and the mean
Jeans mass in the MC are respectively given by

and

— The Jeans mass at the density of the typical fluctuation therefore
evolves as

where M, is the sonic Mach number of the turbulence.

— Inverting this expression, we obtain the time for mass M at the density
of the rms fluctuation to become equal to M; rmS(r)

initial Jeans mass in the cloud.
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— Thus, the time for mass scale M at the density of the rms
turbulent fluctuation to go unstable, for various M, is

VS+18, in prep.

— Thus, sequentially smaller masses become unstable as time
proceeds. 17



— Can also estimate the time at which the first-ever fragment
collapses occur.

* Now, consider the most extreme fluctuations, with t; so small that
they can be assumed to form stars instantaneously.

» The first collapses occur when the mass above this density (given
by the density PDF) equals the local Jeans mass:

M(p 2 pse) =M; (o)

Volume
fraction Lognormal PDF

(VS94).

— As cloud collapses, mass fraction above nge increases. 18



— Thus, the time for the first collapses to occur, for various M
and various cloud masses M., is
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— For reasonable parameters, the first collapses typically occur
between 0.7 and 0.9 t .

— Qualitatively consistent with simulations.

VS+18, in prep. 19



Implications:

— HGC is an evolutionary scenario for MCs and their SFR.

» Contrary to stationary models for the SFR (Krumholz & McKee 05; Padoan &
Nordlund 11; Hennebelle & Chabrier 11; Hopkins 12; Federrath & Klessen 12).

— Collapse starts at the large scales.
» Smaller-scales are the “tips of the iceberg” of the large scales.
— SF accelerates (zamora-Avilés+12, ApJ, 751, 77; Matt’s talk)...

— ... until feedback destroys the region (Colin+13, MNRAS 435, 1701; VS+17,
MNRAS, 467, 1313).
— Nonlinear turbulent fluctuations allow Hoyle-like fragmentation.
« Sequential destabilization of progressively smaller mass scales.

Caveats:

— Calculations are highly idealized:
« Based on spherical geometry.
— Actual timescales (for sheets and filaments) are longer (Toala+12; Pon+12).
 Ignored accretion.

— However, illustrate time-dependence of collapse at different mass

scales. 20
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