The formation of molecular clouds by compression of two-phase atomic gases

Kazunari Iwasaki (Osaka Univ.)

Kengo Tomida (Osaka Univ.) Tsuyoshi Inoue, Shu-ichiro Inutsuka (Nagoya Univ.)

Iwasaki, Tomida, Inoue, and Inutsuka, arXiv: 1806.03824 (under revision)

"The Wonders of Star Formation" Edinburgh, 3 Sep, 2018

Cold Cloud Formation by Shock Compression

Nonlinear disturbance (supernovae, super-bubbles, spiral waves) makes WNM thermally unstable (Hennebelle & Perault 1999,, Koyama & Inutsuka 2000)

- shock compression of WNM induces the thermal instability
 - → CNM clumps are generated.
 - CNM clumps move with a supersonic δv in the surrounding warm gas.

Koyama & Inutsuka 2002, Audit & Hennebelle 2005, Heitsch et al. 2005, 2006, Vazquez-Semadeni et al. 2006, 2007, Hennebelle & Audit 2007, Hennebelle et al. 2007, 2008, Inoue & Inutsuka 2008, 2009, Heitsch et al. 2009, Banerjee et al. 2009, Audit & Hennebelle 2010, Vazquez-Semadeni et al. 2010, 2011, Clark et al. 2012, Kortgen & Banerjee 2015, Valdivia et al. 2016, Zamora-Aviles et al. 2018,...

Molecular Cloud Formation by Accretion of Dense HI Gas

Molecular cloud formation not from low-density WNM ($n \le 1 \text{ cm}^{-3}$) but from dense HI gas

- WNM may be too rarefied to form MC within several tens Myrs (Kawamura et al. 2009). (Pringle et al. 2001, Inoue & Inutsuka 2009, 2012)
- Observations suggest molecular clouds are formed by accretion of HI gas with a density of $\langle n \rangle \sim 10~\text{cm}^{-3}$ (Blitz et al. 2007, Fukui 2009, 2017)
- Dense HI gas has **thermally bistable structure (clumpy HI clouds embedded by WNM).** ← need to be considered.
- Inoue & Inutsuka (2012) investigated MC formation by compression of two phase HI gas. but only parallel field case (compression || B field) (also see Carroll-Nellenback et al. 2014 for hydro)

→We investigated the MC formations in various conditions.

(mean density, collision speed, field strength, field angle)

Head-on Collision of HI Gases

Athena++ (Stone, Tomida, and White in prep.) without self-gravity ($1024 \times 512 \times 512$)

+ Simplified chemical reactions (H+, H, H2, He, He+, C, C+, CO) + Heating/Cooling processes 2-ray approx. extinction of FUV, escape probability of cooling photons

the fiducial parameter set: $\langle n_0 \rangle = 5 \, \mathrm{cm}^{-3}$, $|\overrightarrow{B_0}| = 5 \, \mu \mathrm{G}$, $V_0 = 20 \, \mathrm{km/s}$

$$\boldsymbol{\theta}$$
: the angle between $\overrightarrow{V_0}$ and $\overrightarrow{B_0}$ ($\theta=3^\circ$, $\theta=11^\circ$)

Evolution of Post-shock Layers (Density Slice)

10

time = 0.000 Myr

x[pc]

(Iwasaki et al. under revision)

- **Accretion of inhomogeneous**
- the post-shock layer rapidly expands
- super Alfvenic δv

- Well confined and denser than the $\theta = 3^{\circ}$
- trans- or sub-Alfvenic δv

Small change of θ makes the big difference of the post-shock layers!

Role of Magnetic Fields

Mean Ram and Magnetic Pressures As a Function of θ

Mean Post-shock Density As a Function of θ

What determines $\theta_{\rm crit}$?

Criterion for Pram-dominated

$$\delta v_{x,\theta=0} > C_{A,\text{sh}}$$

Velocity dipsersion

$$\delta v_{x,\theta=0} \sim f \times V_0$$

Conversion factor~ 0.25

Alfven speed in the post-shock layer

$$C_{A,sh} = \frac{(B_0 \sin \theta)^{1/2} V_0^{1/2}}{(2\pi \langle \rho_0 \rangle)^{1/4}}$$

the critical angle

$$\sin \theta_{\text{crit}} = 0.2 \left(\frac{f}{0.25}\right)^2 \left(\frac{\langle n_0 \rangle}{5 \text{ cm}^{-3}}\right)^{1/2} \left(\frac{V_0}{20 \text{ km/s}}\right) \left(\frac{|\mathbf{B}_0|}{5 \mu \text{G}}\right)^{-1}$$

valid only for $V_0 \gg B_0/\sqrt{4\pi\rho_0}$

Parameter Survey

- Parameter survey is performed by changing a parameter set of $(\langle n_0 \rangle, V_0, |B_0|)$.
- In each parameter set, we performed simulations with different θ .

Simulations with Self-gravity (on-going)

- Calculation including the self-gravity implemented by Tomida-san (cost ~ 0.2 x MHD)
- Resolution ~ 0.04 pc (insufficient)
- $\langle n_0 \rangle = 10 \text{ cm}^{-3}, V_0 = 20 \text{ km/s}, B_0 = 5\mu G, \theta = 11^{\circ}$

time = 5.000 Myr

CO column density integrated along compression dir.

Around t ~ 5Myr, $\begin{array}{c} & & & \\ -21.5 & & \\ & & \\ & & \\ & & \\ \end{array}$ a dense core collapses.

many filamentary structures are visible

Summary

- We performed simulations of the MC formation by taking into account chemical reactions, radiative transfer, and heating/cooling.
- We investigated the dependence of the MC formation on B direction.
- At a certain angle $\theta_{\rm cr}$, the mean shocked density becomes the maximum.
 - \Rightarrow there is a preferential angle $\theta \neq 0$ for the MC formation
 - $\theta < \theta_{\rm cr}$: extended post-shock layers (super Alfvenic) gravity will make the post-shock layer compact in the later stage.
 - $\theta \sim \theta_{\rm cr}$: dense post-shock layers (sub Alfvenic)
 - $\theta > \theta_{\rm cr}$: extended post-shock layers due to magnetic pressure.
- This result may produces a diversity of molecular clouds.

Future work

- long-term simulations with high resolution enough to resolve the core size with self-gravity.
- Connection to global scales.