

Outline

How does feedback from massive stars affect the local ISM?

To study this, look at the gas being shaped by nearby massive stars

- Overview of Model Predictions
- ALMA ACA Survey
 - Gas dynamics in the presence of multiple O stars

Overview of Model Predictions

- Models are able to predict how ionising radiation can sculpt the local environment..
 - they all show bubbles, pillars, etc
 - So, how do we distinguish between their predicted outcomes?
- From models specific metrics include:
 - Gas Velocity Dispersion
 - Internal Pillar Motions
 - 'Bodily' motion of the pillar

- Models used for comparisons:
 - Gritschneder et al. 2009
 - Gritschneder et al. 2010
 - Dale et al. 2012
 - (Still need to compare to SILCC & Yule)

Model Predictions

Radiatively driven implosion of Bonor-Ebert Spheres

- Vel. dispersion: ~ 1-2 km/s
- Internal Flows: allowed
- Motion w.r.t cloud: none

Model Predictions

Ionisation front + turbulent medium

- Vel. dispersion: > 6 km/s
- Internal Flows: allowed
- Motion w.r.t cloud: none

Model Predictions

Disruption of cloud by winds and ionisation

- Vel. dispersion: ~1 km/s
- Internal Flows: none
- Motion w.r.t cloud: maybe

Distinction through Kinematics

Model	Type	Velocity Dispersion	Internal Flows	Motion relative to cloud	
Gritschneder+ 2009	Bonnor-Ebert Sphere	~1 – 2 km/s	yes	None	
Gritschneder+ 2010	Ionisation Front + turbulent medium	>6 km/s	yes	None	
Dale+ 2012	Revealed cloud structure	~1 km/s	no	sometimes	

- 13 pillars in Carina
- Cycle 4, ACA only
- cont, CO, ¹³CO, C¹⁸O (J=2-1)
- non-detections: SiO, C³⁴S

Herschel RGB:

R: 250 micron

G: 160 micron

B: 70 micron

What we Observed

- 13 pillars in Carina
- Cycle 4, ACA only
- cont, CO, ¹³CO, C¹⁸O (J=2-1)
- non-detections: SiO, C³⁴S

Herschel RGB:

R: 250 micron

G: 160 micron

B: 70 micron

Star velocities: Hanes et al. 2018

ACA observations

- Give a sense of how large these maps are... the beam is ~6" (0.066 pc)
- This map is 149 ALMA pointings (ACA PB = 45").

First Results

Pillar Velocity Dispersions

- mean line width (sigma) for each pillar
- All but one are below 1 km/s
- All show non-thermal line widths

32

30

28

24

22

20

18

16

²⁶중

Pillar 8 has significant current star formation

Internal Motions

- As the less abundance isotopologue ¹³CO should trace gas deeper within each pillar
- The velocities in general seem to be consistent with each other
- The ¹³CO systematic offset is being investigated

Pillar motion

- Dependent on environment
- (top): pillars distinct from base
- (bottom): pillar and base are at same velocity
 - but right edge is shifted (intense Ha emission at those positions)

Distinction through Kinematics

Model	Type	Velocity Dispersion	Internal Flows	Motion relative to cloud	
Gritschneder+ 2009	Bonnor-Ebert Sphere	~1 – 2 km/s	yes	None	
Gritschneder+ 2010	Ionisation Front + turbulent medium	>6 km/s	yes	None	
Dale+ 2012	Revealed cloud structure	~1 km/s	no	sometimes	

Distinction through Kinematics

Model	Type	Velocity Dispersion	Internal Flows	Motion relative to cloud
Gritschneder+ 2009	Bonnor-Ebert Sphere	~1 – 2 km/s	yes	None
Gritschneder+ 2010	Ionisation Front + turbulent medium	>6 km/s	yes	None
Dale+ 2012	Revealed cloud structure	~1 km/s	no	sometimes

Other Preliminary Results

Masses of the pillars are of order 100's of M_sun (optical depth corrected using ¹³CO and C¹⁸O)

Pillar	$_{M_{\odot}}^{\mathrm{Mass}}$	Max N 10 ²³ cm ⁻²	Mean N 10 ²⁰ cm ⁻²	Velocity km/s
2	725.77±	5.59±0.36	17.07±0.03	-18.83
3	$9665.83 \pm$	6.16 ± 0.21	108.89 ± 0.08	-1.04
4	$319.37 \pm$	5.20 ± 0.30	9.79 ± 0.01	-26.02
5	$38.53 \pm$	3.75 ± 0.14	6.59 ± 0.02	-22.38
6	$51.17 \pm$	0.09 ± 0.00	8.84 ± 0.00	-9.61
8	$1623.95 \pm$	9.04 ± 0.50	19.34 ± 0.02	-14.77
16	$145.26 \pm$	3.26 ± 0.26	4.02 ± 0.01	-19.53
17	$109.55 \pm$	0.02 ± 0.00	4.23 ± 0.00	-20.12
18	$136.84 \pm$	0.04 ± 0.00	5.81 ± 0.00	-19.71
20	$1780.25 \pm$	5.35 ± 0.30	18.34 ± 0.02	-13.41
22	$245.18 \pm$	4.05 ± 0.29	7.87 ± 0.03	-7.51
44	$118.16 \pm$	0.06 ± 0.00	8.43 ± 0.00	-8.91
45	$92.71 \pm$	2.72 ± 0.11	8.90 ± 0.03	-5.48

(There's a bug in the mass uncertainty estimate)

Other Preliminary Results

Separations of cores in each Pillar

Classification: Fell Walker

Distances: Minimum Spanning Tree

- most are < 4L_{Jeans}
- some pillars have much more structure than others

Other Preliminary Results

High velocity dispersion at tip = CO outflow near HH object

- Dale et al. models are most consistent with our observations
 - low velo. dispersions
 - no internal flows
 - some motion relative to rims
- Each (<~ 1pc) pillar has a few hundred M_sun of material
- cores in the pillars are separated by ~2-3 Jeans Lengths

*to be proposed for

Next Steps

- Better understand the relationship between outflows and HH objects in these pillars
- Quantify the PDRs at the edges of each pillar
 - comparing our data to MUSE, HST, JWST (GTO & ERS), and ALMA [CI]*

Long term: Map the whole region with a 50m class sub-mm telescope at the ALMA site

Atacama Large Aperture sub-mm telescope (AtLAST)

Science Workshop Sept 10-13 Royal Observatory Edinburgh

