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Magnetic fields in molecular clouds
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Density (rendered) + Magnetic field lines.  Ideal MHD.  
Left: Typical (idealised) initial conditions in numerical simulations (collapsing spherical clouds).
Right: at ρmax = 10-9 g cm-3
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Ø Strong field; large scale structure



Magnetic fields in molecular clouds
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Ø Strong field; small scale structure
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Leads to:
Ø Weak central magnetic field strengths
Ø Weak surrounding magnetic fields
Ø Rotationally supported discs

Leads to:
Ø Very high central magnetic field strength
Ø Efficient transport of angular momentum
Ø Discs not forming
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2 Wurster,

however, from axi-symmetry, this becomes

r = r̂dr + ẑdz. (4)

Specific values of importance are calculated in the next few
subsections.

3.1 Magnetic current
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3.2 Ohmic Resistivity
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3.3 Hall Effect

Recall that B = �Bzẑ, therefore B̂z = �1.
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3.4 Ambipolar diffusion
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3.5 Summary of terms

Summary assuming B = �Bzẑ, as calculated above:
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Summary assuming B = +Bzẑ (left as an exercise for the reader):
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4 DISCUSSION

From the above equations, Ohmic resistivity and ambipolar diffu-
sion are independent of the initial conditions Bzẑ or �Bzẑ; this is
not true for the Hall effect, since the right-hand side remains posi-
tive, while the left-hand side changes with the initial sign. Further,
note that OR and AD contribute only to the radial and vertical com-
ponents of the magnetic field. Thus, these terms are independent of
direction of rotation of the disc.

The Hall effect, however, returns only a �̂-component from
an initially vertical magnetic field. Thus, there is no diffusion, just
redirection. Now, assuming that the coordinates align with the ro-
tation axis (i.e. ⌦z > 0) would yield a counter-clockwise rotation
when looking from above. Thus, rotation should wind the magnetic
field, giving generating +B�.

The magnetic field gets less dense as r increases, if starting
from a point near the inner edge of the disc at the mid-plane. Thus,
drBz < 0. At a higher elevation, the radial density decrease is
shallower, thus drBz < 0, but less negative than in at lower ele-
vations. Thus vertical gradient of drBz is positive, thus the entire
term is negative, i.e. dzdrBz < 0. Therefore, ⌘HEdzdrBz�̂ takes
the sign opposite of the sign of ⌘HE (recall ⌘HE can be positive or
negative).
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Figure 1. Schematic diagram of the central structure of a collapsing magnetized cloud core. A protostar resides at the center and a

circumstellar disk surrounds it. A flattened disk-like structure, so called “pseudo-disk” surrounds the circumstellar disk at the “neck” of

the hourglass-shaped magnetic field. The midplane of the pseudo-disk corresponds to the current sheet. The direction of the Hall-induced
magnetic field drift and Hall-induced rotation are drawn by assuming ⌘H < 0.

Table 1. List of the models that we used. The model names, the relative angle ✓ between the initial magnetic field and the initial angular

momentum vector of the cloud core, and whether the Hall e↵ect is included (“Yes”) or not (“No”) are tabulated.

Model name Relative angle ✓ With Hall e↵ect

Model0 0� Yes
Model45 45� Yes

Model70 70� Yes

Model90 90� Yes
Model110 110� Yes

Model135 135� Yes

Model180 180� Yes

Model0NoHall 0� No
Model45NoHall 45� No

Model70NoHall 70� No

Model90NoHall 90� No

P is the Plank mean opacity, e = ⇢u+ 1
2
(⇢v2 +B2) is the

total energy where u is the specific internal energy, and �
is the gravitational potential. The parameters ar and G are
the radiation and gravitational constants, respectively.

To close the equations for radiation transfer, we employ
the flux-limited di↵usion (FLD) approximation,
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where R is the Rosseland mean opacity.

We use the smoothed particle hydrodynamics (SPH)
method (Monaghan & Lattanzio 1985; Monaghan 1992)
in our simulations. The numerical code has been devel-
oped by the authors and been used in our previous stud-
ies (e.g., Tsukamoto & Machida 2011, 2013; Tsukamoto
et al. 2013b, 2015c). The ideal MHD part was solved
with the Godunov smoothed particle magnetohydrodynam-
ics (GSPMHD) method (Iwasaki & Inutsuka 2011). The
divergence-free condition is maintained with the hyperbolic
divergence cleaning method for GSPMHD (Iwasaki & Inut-
suka 2013). The radiative transfer is implicitly solved with
the method of Whitehouse & Bate (2004) and Whitehouse
et al. (2005). We treated the Ohmic and ambipolar dif-
fusions with the methods described in Tsukamoto et al.
(2013a) and Wurster et al. (2014), respectively. Both the
di↵usion processes were accelerated by super-time stepping

c
� 0000 RAS, MNRAS 000, 000–000

Image credit: Tsukamoto et al (2017);
see also: Braiding & Wardle (2012a,b)



Collapse to stellar densities:
Evolution of the density
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Wurster, Bate & Price (2018c).  Video available at https://www.youtube.com/watch?v=duaA1bu2wf8



Density
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Wurster, Bate & Price (2018a,c,d)

ØAfter stellar core formation
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Ø Hydro: forms a 50au disc early during the first hydrostatic core phase
Ø Non-ideal with –Bz: forms a 25au disc during the first hydrostatic core phase
Ø Non-ideal with +Bz: forms a 1au disc by the stellar core phase
Ø Ideal: never forms a rotationally supported disc



Radial outflows
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Wurster, Bate & Price (2018a,c)
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ØFirst core outflows:

ØStellar core outflows:

ØOutflow speed is dependent on realistic 𝛇cr and the Hall effect



Core evolution
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ØStrong kG magnetic fields are observed in stars.  Are they fossil, or dynamo-generated?

Wurster, Bate & Price (2018a)



Magnetic field strength
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Wurster, Bate & Price (2018c)

ØThe maximum magnetic field strength is stronger in the ideal MHD model than when using 
non-ideal MHD
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Magnetic field strength

1010
Wurster, Bate & Price (2018d)

ØThe maximum magnetic field strength is not coincident with the central magnetic field strength 
in non-ideal MHD

ØBlack dots represent 6mo after stellar core formation

Non-ideal is aligned



Magnetic field structure
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Wurster, Bate & Price (2018d)

ØIdeal vs aligned non-ideal MHD: during the first hydrostatic core phase
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Magnetic field structure
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Wurster, Bate & Price (2018d)

ØIdeal vs aligned non-ideal MHD: 6mo after stellar core formation (x-z plane)
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Magnetic field structure
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Wurster, Bate & Price (2018d)

ØIdeal vs aligned non-ideal MHD: 6mo after stellar core formation (x-y plane)
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Magnetic field structure
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Wurster, Bate & Price (2018c)

ØIdeal vs anti-aligned non-ideal MHD
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Magnetic field structure
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Wurster, Bate & Price (2018c,d)

ØIdeal vs anti-aligned non-ideal MHD: 6 mo after stellar core formation
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Core evolution
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Wurster, Bate & Price (2018d)

ØStrong kG magnetic fields are observed in stars.  Are they fossil, or dynamo-generated?
ØMost likely dynamo-generated since the fossil magnetic field is << 1000G in the non-ideal 
models
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Conclusions

ØModelled the collapse of a strongly magnetised molecular cloud core through the first core to 
stellar densities; included Ohmic resistivity, ambipolar diffusion, the Hall effect.

Ø Large discs only form in the hydrodynamic and 𝛇cr = 10-17 s-1 with -Bz models.
Ø In the 𝛇cr = 10-17 s-1 with  -Bz model, the maximum magnetic field strength is not coincident 

with the maximum density.
Ø First core outflows are suppressed in the hydrodynamic and 𝛇cr = 10-17 s-1 with -Bz models.
Ø A fast first core outflow exists for the 𝛇cr = 10-17 s-1 with +Bz model.
Ø Stellar core outflows exist only when using ideal magnetohydrodynamcis
Ø When using non-ideal MHD, the maximum magnetic field strength is not coincident with the 

central magnetic field strength
Ø The magnetic fields in stars must be generated by a dynamo action, rather than being fossil in 

origin
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