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Which fraction of stars form in clusters with high-mass

stars?
. . . dP 1 |
Probability of star coming from a cluster with N members ~ X (following Adams 2010)
N N
N between 1 (single star) and 10° (globular cluster) . : ﬂii

0.8-

= 50% of all stars come from a cluster with at least
1000 stars,

0.6-

which contain at least a 10 M, star

ook
B

= a significant amount of stars form in an
environment with at least one high-mass star

Probablility for containing at least a mass Mg P(N, Mg)
o
%]

We are interested in the early stages, so for this o0 ————-
purpose it does not matter if the cluster is bound or net T R



Why does it matter? Interaction!

* Close encounters between all stars and protostars

. . : - Talks by
Influence the binarity properties Rainer Kéhler
- eject stars from the mass reservoir AICIELE [PEMEE

- truncate disks and thus affect accretion  Talk to Asmita Bhandare
* Radiation feedback by high-mass stars

- Influences the Jeans Mass
- photoevaporate disks Poster by Megan Reiter



Low mass stars forming in high-mass clusters have
received little observational attention
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Abstract

. = . 5 4 (2012

The planets of our sgl:ul‘ sysllern lormedlfrom a gas-dus? disk. However, .lhere are some properties of the sq]ar gg;\ 1(‘:?(1??}(5)()((]}-'4%16 17201219031 As\tronomy.[
system that are pfﬂcuha: in _lhls‘cuntext_ First, the cumulative mass of all opjacls beyond Neptune (trans-Neptunian ©ES0 2012 Astrophysu:s
objects [TNOs]) is only a fraction of what one would expect. Second, unlike the planets themselves, the TNOs do
not orbit on coplanar, circular orbits around the Sun, but move mostly on inclined, eccentric orbits and are
distributed in a complex way. This implies that some process restructured the outer solar system after its formation.
However, some of the TNOs, referred to as Sednoids, move outside the zone of influence of the planets. Thus, % %
external forces must have played an important part in the restructuring of the outer solar system. The study Solar SVStem geneal‘)gy revealed by extinct short-lived
presented here shows that a close fly-by of a neighboring star can simultaneously lead to the observed lower mass radionuclides in meteorites
density outside 30 au and excite the TNOs onto eccentric, inclined orbits, including the family of Sednoids. In the
past it was estimated that such close fly-bys are rare during the relevant development stage. However, our M. Gounelle! and G. Meynet?
numerical simulations show that such a scenario is much more likely than previously anticipated. A fly-by also
naturally explains the puzzling fact that Neptune has a higher mass than Uranus. Our simulations suggest that many | Laboratoire de Mingralogie et de C himie du M UME 7202, Muséum National d'Histoire Nawrelle & CNRES.
additional Sednoids at high inclinations still await discovery. perhaps including bodies like the postulated planet X. 75005 Paris, France

y . ’ i c-mail: gounelle@mnhn, fr
Key words: Kuiper belt: general — minor planets, asteroids: general — open clusters and associations: general — e Observatory, University of Geneva, Maillettes 51, 1290 Sauverny, Switzerland

planetary systems — planets and satellites: formation — protoplanetary disks

Received 14 February 2012 / Accepted 6 June 2012

ABSTRACT

Contaxt. Lintle is known about the stellar envi and the g 2y of our solar system. Short-lived radionuclides (SLRs, mean
lifetime t shorter than 100 Myr) that were present in the solar protoplanetary disk 4.56 Gyr ago could potentially provide insight into
that key aspect of our history, were their origin understood,
Aims. Previous models failed to provide a reasonable t.x]vl.in.mun of the abundance of two key SLRs
e (14 = 3.7 Myr), at the birth of the solar system by requiring unlikely astroph
and generic solution based on the most recent understanding of star-forming mech
Methods. Iron-60 in the nascent solar system is shown to have been produced by a diversity of supernovae belonging to a first
generation of stars in a giant molecular cloud. Aluminum-26 is delivered into a dense collected shell by a single massive star wind
belonging to a second star generation. The Sun formed in the collected shell as part of a third stellar generation. Aluminum-26 yields
used in our calculation are based on new rotating stellar models in which ** Al is present in stellar winds during the star main sequence
rather than during the Wolf-Rayet phase alone. Our scenario Iy ins the time seq of the formation of the two
stellar generations that just pn.r.tdr.‘d the solar system formation, along with the number of stars born in these two gen
Results. We pmpw.c a generic explanation for the past presence of SLRs in the nascent solar system, based on a collect
I} 0 ing on a diversity of spatial/temporal scales, In that model, the presence of SLRs y
Ill'clum,\ in the solar protoplanetary disk is simply the fossilized record of sequential star formation within a hierarchical interstellar
medium. We identify the gencalogy of our solar system’s three star generations earlier. In particular, we show that cne Sun was by
tozether with a few hundred stars in a dense collected shell situated at a distance of 5- 10 pe from a parent massive star having a mass
greater than about 30 solar masses and belonging to a cluster containing ~ 1200 stars.

*Al (r3s = L1 Myr) and
sical conditions. Our aim is to propose a coherent

Key words. plancts and satellites: formation — meteorites, meteors, meteoroids — ISM: clouds — gamma-ray burst: general —
stars: rotation
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NGC 6334 Small scale structure

Pioneering work by Sandell 2000, Hunter et al. 2014, 2017, 2018, Brogan et al. 2016

ALMA data shown: Pl Baobab Liu, PhD Mahya Sadaghiani, Master Atefeh Aghababaei
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Cumulative Core Mass Function
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Cumulative Core Mass Function

in mass by factor of 15
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KDE (Distance between cores)
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Atefeh Aghababaei
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Benedikt Helmstaedter

G327 - ALMA 1.3 mm observations
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Niraj Kandpal

Red shifted outflow
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Future Research

* EXxisting data

- Characterize outflow properties (e.g. orientation relative to filament,
momentum, energy etc.)

- Understand mass flow within the filaments
— Velocity dispersion of cores

e More data

- Deeper: what does the CMF look like at even lower mass?
- Higher resolution: characterize multiplicity
- Both: find and characterize disks, particularly in high stellar density regions

— More sources



Stay tuned...

Thank you for your attention!
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