
A detailed ALMA study of an early stage protostar formation in a highly dynamical dense core

Tokuda, Kazuki (Osaka Pref. Univ./NAOJ)

References

- Tokuda+14, ApJL, 789, L4, Tokuda+16, ApJ, 826, 26,
- •Tokuda+17, ApJ, 849, 101, •Tokuda+18, ApJ, 862, 8

A detailed ALMA study of an early stage protostar formation in a highly dynamical dense core

Tokuda, Kazuki (Osaka Pref. Univ./NAOJ)

Collaborators:

Onishi, Toshikazu; Saigo, Kazuya; Matsumoto, Tomoaki; Inutsuka, Shu-ichiro; Machida, Masahiro N.; Tomida, Kengo; Inoue, Tsuyoshi; Kunitomo, Masanobu; Kawamura, Akiko; Fukui, Yasuo; Tachihara, Kengo, Hosokawa, Takashi; Philippe André

Contents:


- •Introduction ~What is MC27/L1521F?~
- *ALMA Cycle 0,1 Obs. (Tokuda+14,16)
- ALMA Cycle 3 Obs. (Tokuda+17,18)
- Summary

References

- Tokuda+14, ApJL, 789, L4, Tokuda+16, ApJ, 826, 26,
- •Tokuda+17, ApJ, 849, 101, •Tokuda+18, ApJ, 862, 8

Introduction

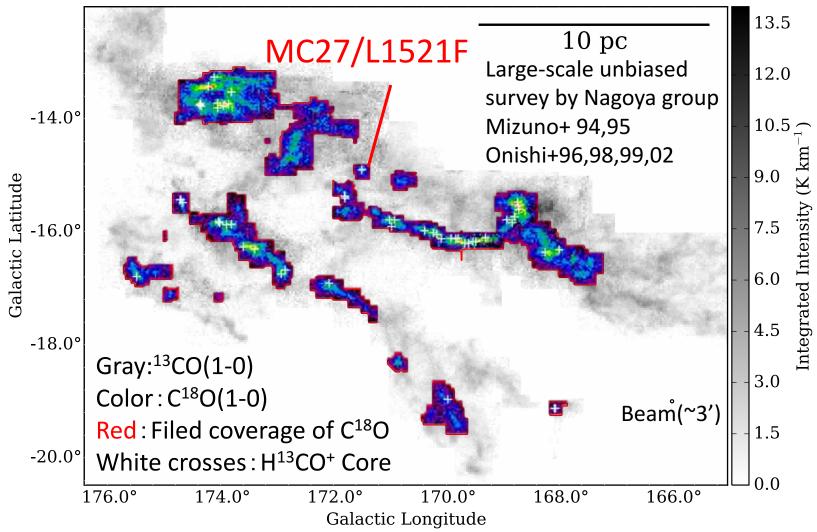
Quest for the moment of the star formation

Expected phenomena

First protostellar core object

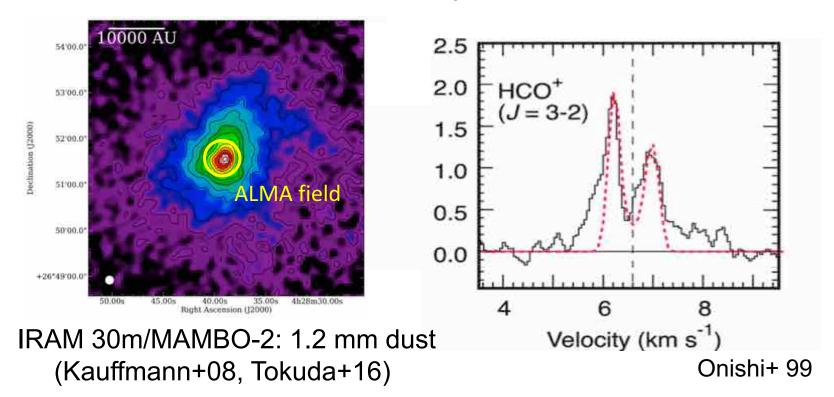
Compact outflow

Fragmentation of dense gas


e.g., Larson69, Shu77, Masunaga+98, Matsumoto+03, Machida+08, Tomida+13...

Revealing processes

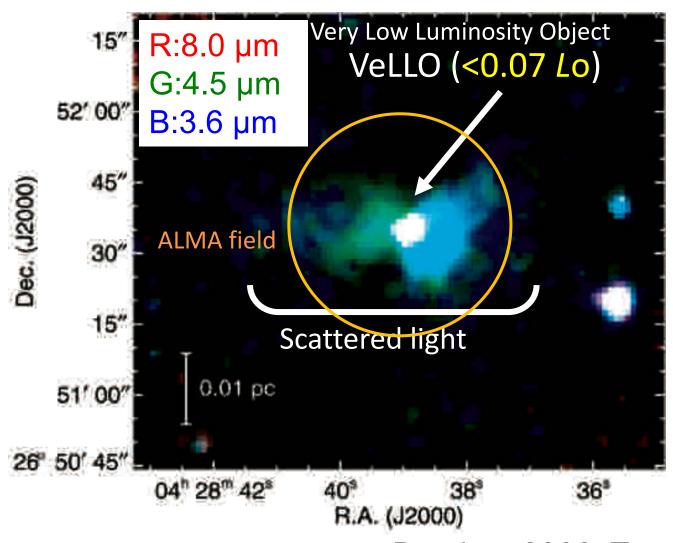
Adiabatic core formation
Initial mass function
Multiple star formation


Introduction: searching for high-density cores

Observation strategy: Optically thick lines=> Optically thin lines

=> Discovered ~50 high-density (~10⁵ cm⁻³) condensations in Taurus MC27/L1521F has the highest density among the starless cores

Introduction what is MC27/L1521F?



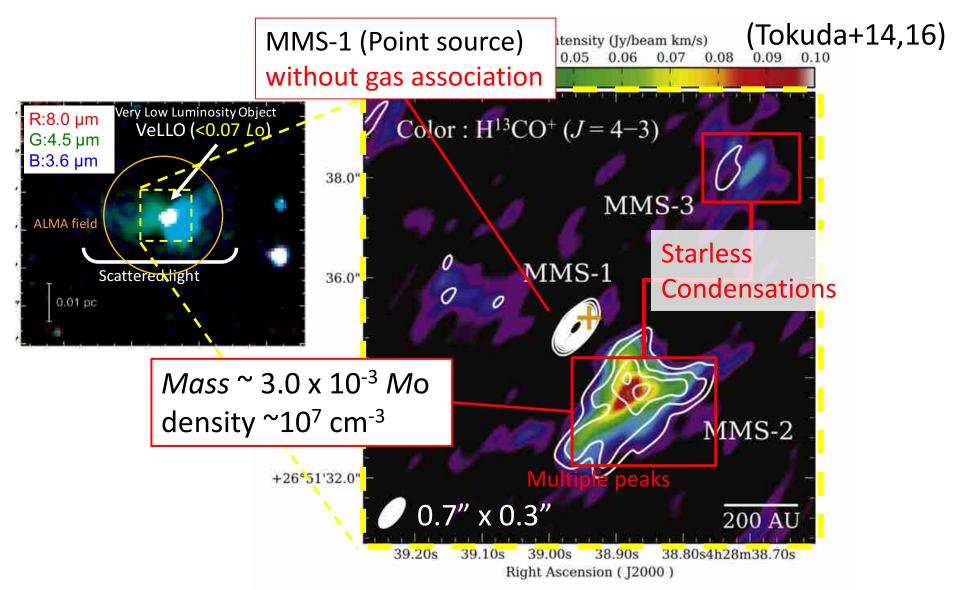
- Features (Before ALMA)
 - 1. One of the *densest cores* in low-mass star forming regions (e.g Onishi+99,02, Crapsi+04)
 - 2. Indication of outflowing/inflowing motion (e.g. Onishi+99)

Total mass~3–4 Mo, Density~10⁶ cm⁻³, Temperature ~10 K

Introduction what is MC27/L1521F?

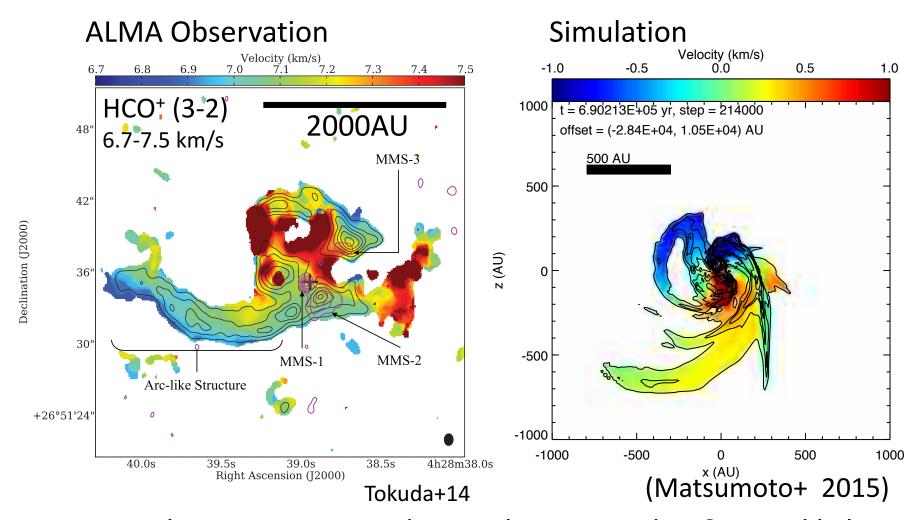
I.R. observations with *Spitzer* space telescope

Bourke+ 2006, Tereby+ 2009


Internal summary of MC27/L1521F

Before ALMA obs. v.s. After ALMA obs.

	Single-dish Obs.	ALMA Obs.
Shape	(Nearly) spherical	Complex structures
Central Density	~10 ⁶ cm ⁻³	10 ⁶ -10 ⁷ cm ⁻³ (MMS2,3)
Single or Multiple?	Single (VeLLO)	(Possible) Multiple
Outflow evidence	Scattered light	Compact molecular outflow?
Protostellar mass	<0.1 <i>M</i> o ?	~0.2 Mo
Accretion rate	10 ⁻⁵ –10 ⁻⁶ Mo/yr?	<10 ⁻⁸ <i>M</i> o/yr
Disk size	Large (>100AU) ?	<i>R</i> ∼10 AU
Temperature	~10 K	Warm CO gas, 15-60 K


Is it a typical protostellar core in an early stage of star formation?

Protostar and condensations at the center of the core

Color: H¹³CO⁺ (4-3), Contour: 0.87 mm Cont.

Complex velocity/spatial structures: Turbulence?

- Are the arcs corresponding to the cavity edges? => Unlikely
- A possible origin of ~2000 AU arc-like feature
- =>Waves caused by gravitational torque of multiple system

Internal summary of MC27/L1521F

Before ALMA obs. v.s. After ALMA obs.

	Single-dish Obs	5.		ALMA Obs.
Shape	(Nearly) spheric	al		Complex structures
Central Density	~10 ⁶ cm ⁻³			10 ⁶ -10 ⁷ cm ⁻³ (MMS2,3)
Single or Multiple?	Single (VeLLO)			(Possible) Multiple
Outflow evidence	Scattered light	;	С	ompact molecular outflow?
Protostellar mass	<0.1 <i>M</i> o ?			~0.2 <i>M</i> o
Accretion rate	10 ⁻⁵ –10 ⁻⁶ Mo/yr	.?		<10 ⁻⁸ <i>M</i> o/yr
Disk size	Large (>100AU)	?		<i>R</i> ∼10 AU
Temperature	~10 K			Warm CO gas, 15-60 K

A highly dynamical protostellar core?

ALMA Cycle 3 Observations

Table: Specifications

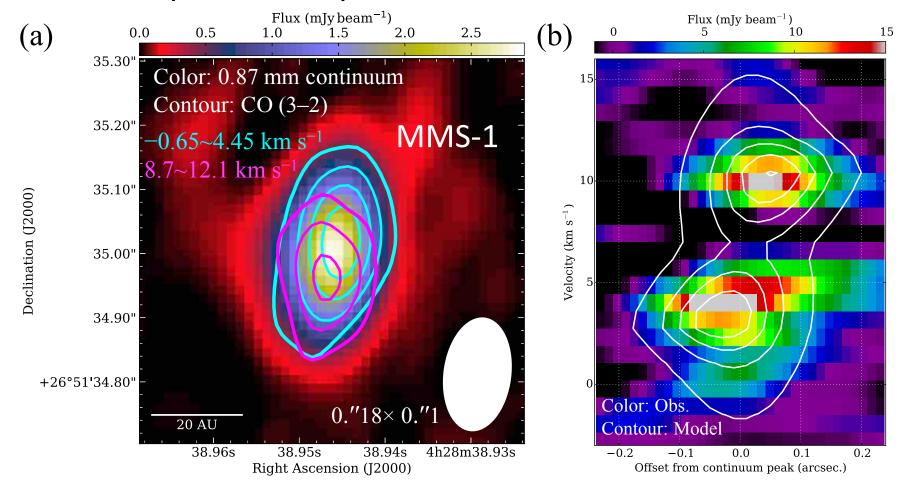
Period ALMA Cycle 3

Target MC27(=L1521F)

Beam size $0."18 \times 0."1 (25 \times 14 \text{ AU})$

Velocity resolution 0.85 km/s

Lines CO(3-2), $H^{13}CO^{+}(4-3)$, $C^{17}O(3-2)$,


0.87 mm continuum

Main Results

- 1. R ~10 AU disk around ~0.2 M_o protostar (Tokuda+17)
- 2. Warm CO gas generated by possible turbulent shocks (Tokuda+18)
 - warm (15–50 K) gas, very thin filaments, and compact clumps

^{*}ALMA 12m array alone (7m, TP observations in Cycle 1)

A possible Keplerien disk around the VeLLO?

Constrained physical properties form simulated observations ¹²CO and 0.87mm

M_*	M_{disk}	R_{disk}
$0.18 \pm 0.05 M_{\odot}$	$8 \times 10^{-5} M_{\odot}$	9 AU

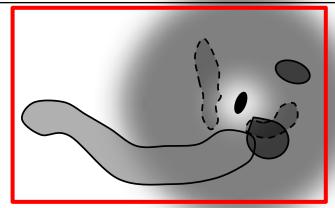
Disscussion

Witnessing the final stage of the formation of $\sim 0.2 M_{\odot}$ protostar?

Observed features	Indications
Low-luminosity (<0.07 Lo)Tiny outflow	Quite low-accretion rate (<2e-8 Mo/yr)
Scatted light seen in Spitzer	 Large accretion activities in the past
■ Braking radius of the column density profile ~3000 AU	-Accretion late (2e-6 M_{\odot} /yr) * time (7e4 yr) ~0.1 M_{\odot}
 No-high density envelope around the protostar Rdisk ~10 AU 	The disk is detached from envelopes => Mass accretion through the disk does not occur anymore

Dense core

Schematic view of detached disk


Disscussion

Witnessing the final stage of the formation of $\sim 0.2 M_{\odot}$ protostar?

Observed features	Indications
Low-luminosity (<0.07 Lo)Tiny outflow	Quite low-accretion rate (<2e-8 Mo/yr)
-Scatted light seen in Spitzer	-Large accretion activities in the past
 Braking radius of the column density profile ~3000 AU 	•Accretion late (2e-6 M_{\odot} /yr) * time (7e4 yr) ~0.1 M_{\odot}
 No-high density envelope around the protostar Rdisk ~10 AU 	The disk is detached from envelopes => Mass accretion through the disk does not occur anymore

Posibility

The intrinsically larger disk was stripped by the surrounding gas in the turbulent environment.

Schematic view of detached disk

ALMA Cycle 3 Observations

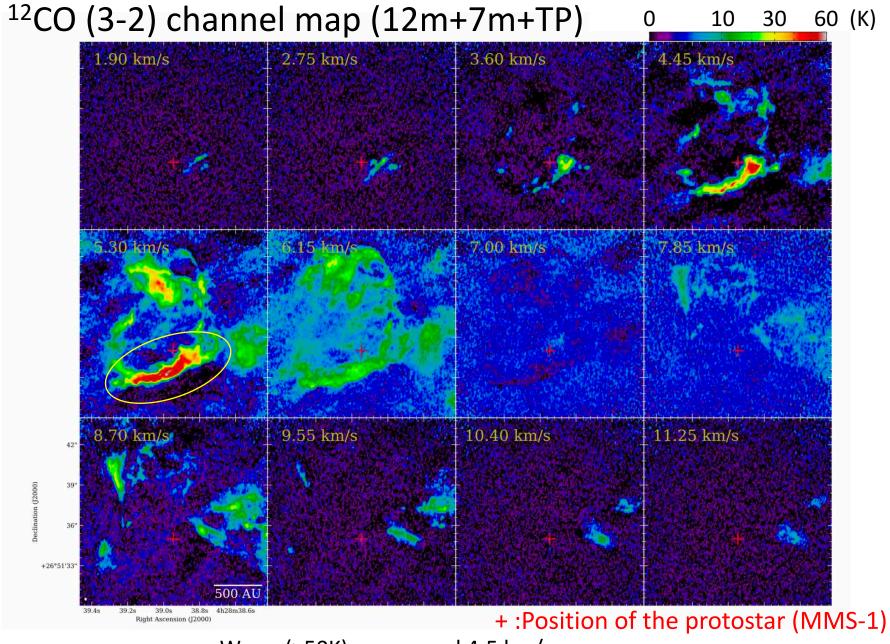
Table: Specifications

Period ALMA Cycle 3

Target MC27(=L1521F)

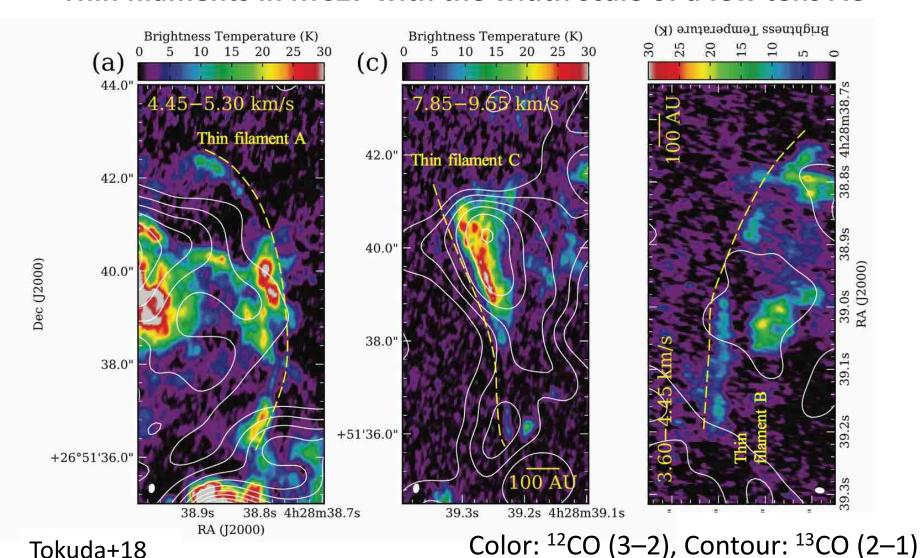
Beam size $0."18 \times 0."1 (25 \times 14 \text{ AU})$

Velocity resolution 0.85 km/s

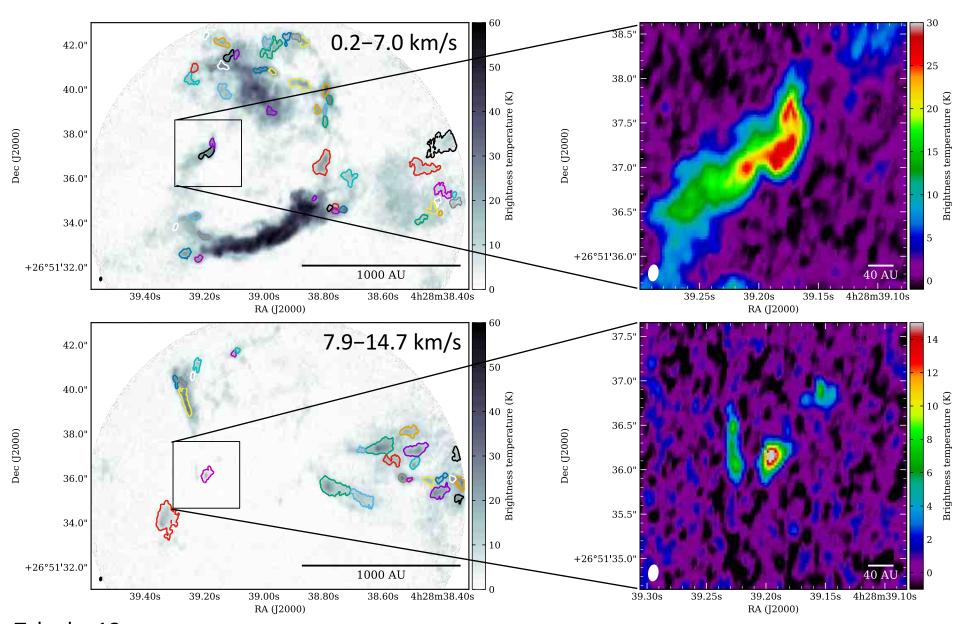

Lines CO(3-2), $H^{13}CO^{+}(4-3)$, $C^{17}O(3-2)$,

0.87 mm continuum

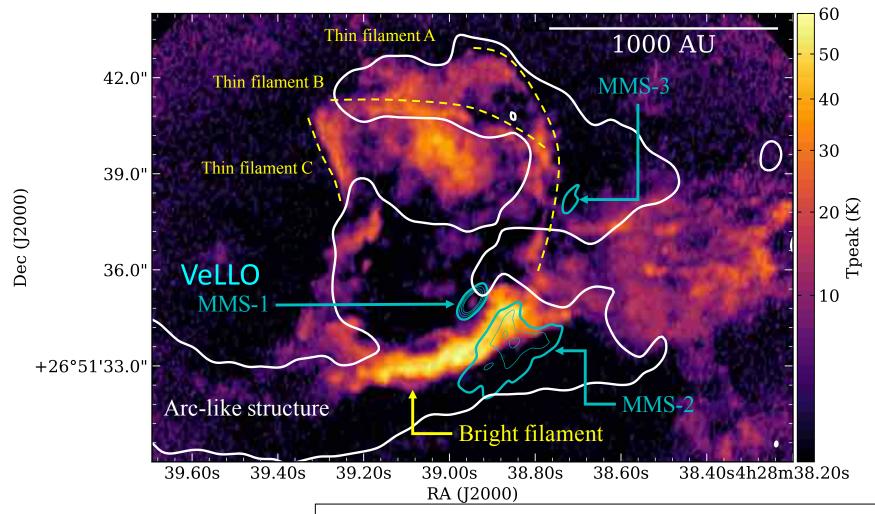
Main Results


- 1. $R \sim 10$ AU disk around $\sim 0.2 M_{\odot}$ protostar (Tokuda+17)
- 2. Warm CO gas generated by possible turbulent shocks (Tokuda+18)
 - warm (15-60 K) gas, very thin filaments, and compact clumps

^{*}ALMA 12m array alone (7m, TP observations in Cycle 1)


- Warm (>50K) gas around 4-5 km/s
- Many filamentary and clumpy structures

Thin filaments in MC27 with the width scale of a few tens AU


Several very thin filamentary gas => Possible shocked layers?

Tiny CO clumps

Tokuda+18

Warm CO filamentary gas generated by possible turbulent shocks

Color: ¹²CO (3-2) peak temp.

White contour: HCO⁺ (3-2)

Cyan contour: 0.87mm continuum

Possible interpretations:

- Warm gas formed by shock heating
- Thermal instability (c.f., Koyama+00, Aota+13)

Tokuda+18

Summary of MC27/L1521F

Before ALMA obs. v.s. After ALMA obs.

	Single-dish Obs.	ALMA Obs.
Shape	(Nearly) spherical	Complex structures
Central Density	~10 ⁶ cm ⁻³	10 ⁶ -10 ⁷ cm ⁻³ (MMS2,3)
Single or Multiple?	Single (VeLLO)	(Possible) Multiple
Outflow evidence	Scattered light	Compact molecular outflow?
Protostellar mass	<0.1 <i>M</i> o ?	~0.2 <i>M</i> o
Accretion rate	10 ⁻⁵ –10 ⁻⁶ Mo/yr?	<10 ⁻⁸ <i>M</i> o/yr
Disk size	Large (>100AU) ?	<i>R</i> ~10 AU
Temperature	~10 K	Warm CO gas, 15-60 K

Possible origin: Dynamical (turbulent) motion in this system?