A detailed ALMA study of an early stage protostar formation in a highly dynamical dense core Tokuda, Kazuki (Osaka Pref. Univ./NAOJ) #### References - Tokuda+14, ApJL, 789, L4, Tokuda+16, ApJ, 826, 26, - •Tokuda+17, ApJ, 849, 101, •Tokuda+18, ApJ, 862, 8 # A detailed ALMA study of an early stage protostar formation in a highly dynamical dense core Tokuda, Kazuki (Osaka Pref. Univ./NAOJ) ### **Collaborators:** Onishi, Toshikazu; Saigo, Kazuya; Matsumoto, Tomoaki; Inutsuka, Shu-ichiro; Machida, Masahiro N.; Tomida, Kengo; Inoue, Tsuyoshi; Kunitomo, Masanobu; Kawamura, Akiko; Fukui, Yasuo; Tachihara, Kengo, Hosokawa, Takashi; Philippe André #### Contents: - •Introduction ~What is MC27/L1521F?~ - *ALMA Cycle 0,1 Obs. (Tokuda+14,16) - ALMA Cycle 3 Obs. (Tokuda+17,18) - Summary #### References - Tokuda+14, ApJL, 789, L4, Tokuda+16, ApJ, 826, 26, - •Tokuda+17, ApJ, 849, 101, •Tokuda+18, ApJ, 862, 8 ### Introduction ### Quest for the moment of the star formation ### **Expected phenomena** First protostellar core object Compact outflow Fragmentation of dense gas e.g., Larson69, Shu77, Masunaga+98, Matsumoto+03, Machida+08, Tomida+13... ### **Revealing processes** Adiabatic core formation Initial mass function Multiple star formation # **Introduction**: searching for high-density cores Observation strategy: Optically thick lines=> Optically thin lines => Discovered ~50 high-density (~10⁵ cm⁻³) condensations in Taurus MC27/L1521F has the highest density among the starless cores # **Introduction** what is MC27/L1521F? - Features (Before ALMA) - 1. One of the *densest cores* in low-mass star forming regions (e.g Onishi+99,02, Crapsi+04) - 2. Indication of outflowing/inflowing motion (e.g. Onishi+99) Total mass~3–4 Mo, Density~10⁶ cm⁻³, Temperature ~10 K ## **Introduction** what is MC27/L1521F? I.R. observations with *Spitzer* space telescope Bourke+ 2006, Tereby+ 2009 # Internal summary of MC27/L1521F Before ALMA obs. v.s. After ALMA obs. | | Single-dish Obs. | ALMA Obs. | |---------------------|---|--| | Shape | (Nearly) spherical | Complex structures | | Central Density | ~10 ⁶ cm ⁻³ | 10 ⁶ -10 ⁷ cm ⁻³ (MMS2,3) | | Single or Multiple? | Single (VeLLO) | (Possible) Multiple | | Outflow evidence | Scattered light | Compact molecular outflow? | | Protostellar mass | <0.1 <i>M</i> o ? | ~0.2 Mo | | Accretion rate | 10 ⁻⁵ –10 ⁻⁶ Mo/yr? | <10 ⁻⁸ <i>M</i> o/yr | | Disk size | Large (>100AU) ? | <i>R</i> ∼10 AU | | Temperature | ~10 K | Warm CO gas, 15-60 K | Is it a typical protostellar core in an early stage of star formation? ### Protostar and condensations at the center of the core Color: H¹³CO⁺ (4-3), Contour: 0.87 mm Cont. ### Complex velocity/spatial structures: Turbulence? - Are the arcs corresponding to the cavity edges? => Unlikely - A possible origin of ~2000 AU arc-like feature - =>Waves caused by gravitational torque of multiple system # Internal summary of MC27/L1521F Before ALMA obs. v.s. After ALMA obs. | | Single-dish Obs | 5. | | ALMA Obs. | |---------------------|--|-----------|---|--| | Shape | (Nearly) spheric | al | | Complex structures | | Central Density | ~10 ⁶ cm ⁻³ | | | 10 ⁶ -10 ⁷ cm ⁻³ (MMS2,3) | | Single or Multiple? | Single (VeLLO) | | | (Possible) Multiple | | Outflow evidence | Scattered light | ; | С | ompact molecular outflow? | | Protostellar mass | <0.1 <i>M</i> o ? | | | ~0.2 <i>M</i> o | | Accretion rate | 10 ⁻⁵ –10 ⁻⁶ Mo/yr | .? | | <10 ⁻⁸ <i>M</i> o/yr | | Disk size | Large (>100AU) | ? | | <i>R</i> ∼10 AU | | Temperature | ~10 K | | | Warm CO gas, 15-60 K | A highly dynamical protostellar core? ### **ALMA Cycle 3 Observations** Table: Specifications Period ALMA Cycle 3 Target MC27(=L1521F) Beam size $0."18 \times 0."1 (25 \times 14 \text{ AU})$ Velocity resolution 0.85 km/s Lines CO(3-2), $H^{13}CO^{+}(4-3)$, $C^{17}O(3-2)$, 0.87 mm continuum #### Main Results - 1. R ~10 AU disk around ~0.2 M_o protostar (Tokuda+17) - 2. Warm CO gas generated by possible turbulent shocks (Tokuda+18) - warm (15–50 K) gas, very thin filaments, and compact clumps ^{*}ALMA 12m array alone (7m, TP observations in Cycle 1) ### A possible Keplerien disk around the VeLLO? Constrained physical properties form simulated observations ¹²CO and 0.87mm | M_* | M_{disk} | R_{disk} | |----------------------------|------------------------------|------------| | $0.18 \pm 0.05 M_{\odot}$ | $8 \times 10^{-5} M_{\odot}$ | 9 AU | ### Disscussion Witnessing the final stage of the formation of $\sim 0.2 M_{\odot}$ protostar? | Observed features | Indications | |---|---| | Low-luminosity (<0.07 Lo)Tiny outflow | Quite low-accretion rate (<2e-8 Mo/yr) | | Scatted light seen in Spitzer | Large accretion activities in the past | | ■ Braking radius of the column density profile ~3000 AU | -Accretion late (2e-6 M_{\odot} /yr) * time (7e4 yr) ~0.1 M_{\odot} | | No-high density envelope around
the protostar Rdisk ~10 AU | The disk is detached from envelopes => Mass accretion through the disk does not occur anymore | Dense core Schematic view of detached disk ### Disscussion Witnessing the final stage of the formation of $\sim 0.2 M_{\odot}$ protostar? | Observed features | Indications | |---|---| | Low-luminosity (<0.07 Lo)Tiny outflow | Quite low-accretion rate (<2e-8 Mo/yr) | | -Scatted light seen in Spitzer | -Large accretion activities in the past | | Braking radius of the column
density profile ~3000 AU | •Accretion late (2e-6 M_{\odot} /yr) * time (7e4 yr) ~0.1 M_{\odot} | | No-high density envelope around
the protostar Rdisk ~10 AU | The disk is detached from envelopes => Mass accretion through the disk does not occur anymore | ### **Posibility** The intrinsically larger disk was stripped by the surrounding gas in the turbulent environment. Schematic view of detached disk ### **ALMA Cycle 3 Observations** Table: Specifications Period ALMA Cycle 3 Target MC27(=L1521F) Beam size $0."18 \times 0."1 (25 \times 14 \text{ AU})$ Velocity resolution 0.85 km/s Lines CO(3-2), $H^{13}CO^{+}(4-3)$, $C^{17}O(3-2)$, 0.87 mm continuum #### Main Results - 1. $R \sim 10$ AU disk around $\sim 0.2 M_{\odot}$ protostar (Tokuda+17) - 2. Warm CO gas generated by possible turbulent shocks (Tokuda+18) - warm (15-60 K) gas, very thin filaments, and compact clumps ^{*}ALMA 12m array alone (7m, TP observations in Cycle 1) - Warm (>50K) gas around 4-5 km/s - Many filamentary and clumpy structures #### Thin filaments in MC27 with the width scale of a few tens AU Several very thin filamentary gas => Possible shocked layers? ### Tiny CO clumps Tokuda+18 ### Warm CO filamentary gas generated by possible turbulent shocks Color: ¹²CO (3-2) peak temp. White contour: HCO⁺ (3-2) Cyan contour: 0.87mm continuum ### Possible interpretations: - Warm gas formed by shock heating - Thermal instability (c.f., Koyama+00, Aota+13) Tokuda+18 # **Summary of MC27/L1521F** Before ALMA obs. v.s. After ALMA obs. | | Single-dish Obs. | ALMA Obs. | |---------------------|---|--| | Shape | (Nearly) spherical | Complex structures | | Central Density | ~10 ⁶ cm ⁻³ | 10 ⁶ -10 ⁷ cm ⁻³ (MMS2,3) | | Single or Multiple? | Single (VeLLO) | (Possible) Multiple | | Outflow evidence | Scattered light | Compact molecular outflow? | | Protostellar mass | <0.1 <i>M</i> o ? | ~0.2 <i>M</i> o | | Accretion rate | 10 ⁻⁵ –10 ⁻⁶ Mo/yr? | <10 ⁻⁸ <i>M</i> o/yr | | Disk size | Large (>100AU) ? | <i>R</i> ~10 AU | | Temperature | ~10 K | Warm CO gas, 15-60 K | Possible origin: Dynamical (turbulent) motion in this system?