

Herschel Spectroscopy of Massive Young Stellar Objects in the Magellanic Clouds

Joana M. Oliveira

UNIVERSITY

Why study young stars in the Magellanic Clouds?

hearby gas-rich galaxies: d ~ 50 kpc (LMC) d ~ 60 kpc (SMC)

- detailed resolved studies
- galaxies-wide view of star formation
- \diamond lower metallicity templates: $Z_{LMC} \simeq 0.4 Z_{\odot}$ and $Z_{SMC} \simeq 0.2 Z_{\odot}$
- variety of star formation environments from mini-starburst to low gas density
- Spitzer Space Telescope and Herschel Space Observatory facilitated large samples of massive YSOs

Herschel spectroscopic survey of Magellanic YSOs

Magellanic YSOs selected for Herschel Spectroscopy

massive YSO properties:	target	known properties	${\rm M/M_{\odot}}$	$L/10^{3}L_{\odot}$
	LMC			
well studied with Spitzer	IRAS04514-6931	strong ice	25	68
wen staaled with opitzer	IRAS05011 - 6815	maser	29	21
+ range in luminosities	IRAS05328 - 6827	weak ice	17	13
	LMC053705 - 694741	Herschel YSO	28	5
🔶 "auiescent" environments	N113-YSO3	protocluster, UCHII, maser	33	246
	N113-YSO4	protocluster, UCHII, possible maser	29	121
+ range in properties (ices	SAGE045400.9-691151.6	strong ice, maser	21	128
	SAGE051024.1-701406.5	strong ice	16	18
maser sources UCHII)	SAGE051351.5-672721.9	weak ice	40	122
maser sources, oermy	SAGE052202.7-674702.1	weak ice	15	28
	SAGE052212.6-675832.4	weak ice	41	319
	SAGE052350.0-675719.6	strong ice	17	57
nroject goals:	SAGE053054.2-683428.3	strong ice	29	73
	ST01	weak ice	21	41
🔶 investigate emission line	N113-YSO1	maser	38	264
	SMC			
nronerties	IRAS00464-7322	strong ice	15	12
properties	IRAS00430-7326	UCHII, strong ice, maser	26	71
constrain cooling hudget	N81–IRS1	protocluster, UCHII with outflow	16	54
	S3MC00541-7319	strong ice	21	24
metallicity effects ?	N88A	protocluster, UCHII, H_2 arc	28	195

Herschel spectroscopy of Magellanic YSOs

PACS unchopped line scan: [OI] 63μm, [OIII] 88μm, [CII] 158μm, CO 186μm, H₂O 179.5/108μm, OH 79/84μm (beam~9.5-12")

SPIRE FTS spectrum (SEC applied, beam ~16.5-42")

Detected atomic and molecular species

	PACS				SPIRE				
	[OI]	[CII]	[OIII]	CO	H ₂ O	OH	CO	[CI]	[NII]
	$63 \mu m$	$158 \mu m$	$88 \mu m$	$186 \mu m$	$179.5/108 \mu { m m}$	$79/84 \mu \mathrm{m}$	ladder	$370/609 \mu { m m}$	$205 \mu { m m}$
LMC	16/16	16/16	9/14	5/16	6/16	5/16	14/14	14/14	7/14
SMC	5/5	5/5	3/4	2/4	2/5	0/5	5/5	5/5	2/5

- + [OI] and [CII] emission always observed
- + CO ladder always detected; usable (SNR> 5) for 15 sources
- + weak $H_2O @ 179.5/108 \mu m$ emission for 8 YSOs
- + weak OH emission in 5 LMC sources; 2 LMC sources in absorption
- consistent with low H₂O and OH contribution to cooling for Galactic high-mass YSOs

ISO LWS (d \sim 1-10 kpc) Ine emission enhanced wrt dust continuum in Magellanic Clouds (e.g. Israel & Maloney 2011)

from PDRs and shocks; [CII] also from HII regions and diffuse neutral and ionised gas common origin for [OI], [CII] line emission in PDRs

[CII] & [OI] emission originates

Origin of atomic line emission

Photoelectric efficiency & ISM properties

PDR Toolbox (Pound & Wolfire 2008; Kaufman 2006)

MCs YSOs: higher photoelectric efficiency SMC PAHs emission from neutral small grains (Sandstrom et al. 2012; Oliveira et al. 2013) \bullet low G₀/n consistent with low metallicity dwarf galaxies (Cormier et al. 2015) Iarger UV photon mean free path leads to larger distance to PDR face UV field dilution and reduced grain charging

distinct ISM properties and structure at
 low metallicity (porous and clumpy ISM
 Madden et al. 2006; Cormier et al. 2015)

SPIRE CO rotational diagrams

 ♦ optically thin LTE gas
 ♦ T₁ ~ 35 K, T₂ ~ 132 K (slopes), N ~ 10⁵⁵ mol. (ordinate)

also continuous T distribution

- non-LTE gas models (Neufeld 2012)
- single uniform density & temperature gas
- \blacktriangleright T \gtrsim 1000 K, n \lesssim 10⁴ cm⁻²
- ♦ gas clearly subthermal

Edinburgh 2018

Origin of CO emission

PDR versus shocked gas

PDR Toolbox (log(n, G₀) = 2-6)
Paris-Durham shock models
(Lee et al. 2016; Flower &
Pineau des Forêst 2015):
log n_{ps}=3-6, b=1, v= 4-20 kms⁻¹
solar metallicity
better agreement with shocks
L(CO)/L(TIR)>0.01% supports
shocks

hint of multiple components

shock origin for CO emission

Properties of CO emission

+ what we know from Galactic and Magellanic YSOs

- SLEDs fitted by either multiple-components of thermalised cold/warm gas or subthermal hot gas (e.g. Manoj et al. 2013)
- reasonably consistent properties (e.g. gas temperature) across
 YSO properties (i.e. weak dependence on YSO luminosity)
- + emission originates from shocked gas
- + over J ∈[4:44] multiple spatially distinct components: T~30-50, 100, 300, 700 K (e.g. Yang et al. 2018)
- kinematic evidence from H₂O and CO Herschel-HIFI observation
 Kristensen et al. 2017 and references therein

Properties of CO emission

Main cooling species

median contributions (with large spread)
[OI] main coolant for 10/13 YSOs, followed by CO and [CII]
SMC YSOs: marked decrease in CO contribution (3/4 sources)
linked to reduced gas-phase CO abundance (e.g. Leroy et al. 2007)

Cooling budgets for Galactic & Magellanic YSOs

Galactic samples: Karska et al. (2013, 2014, 2018)

For Galactic YSOs:

 CO dominates cooling
 shift to [OI] as YSO evolves; CO dissociated
 H₂O and OH important only for low-mass YSOs; easily photodissociated

For Magellanic YSOs:

- [OI] dominates cooling
- CO cooling further reduced for LMC
- small contribution from H₂O and OH
- known YSO properties

Edinburgh 2018

Summary

 [OI] and [CII] emission indicate higher photoelectric efficiency in MC YSOs, consistent with reduced grain charge and increased UV dilution

- SPIRE CO rotational diagrams consistent with Galactic observations (cooler components) and shock origin
- weak H₂O and OH emission consistent with modest role in massive YSO cooling
- [OI] dominates cooling in MC YSOs; CO cooling possibly further reduced in SMC YSOs

different cooling budgets between Galactic and MC YSOs