

Superbeam, Beta Beam, and Neutrino Factory (3)

Yoshitaka Kuno Osaka University

3rd Lecture

61st Scottish Summer School in Physics 17 August, 2006

Outline of the Third Lecture

- Neutrino Factory Complex (How it looks like ?)
- Betabeam
- New Physics at Neutrino Factory
- Summary

Neutrino Factory Complex

Proton Drivers

- 1 4 MW proton beam power is needed.
 - only beam power matters.
 - Proton energy is not important (next slide), but 5-15 (10) GeV would be the best.
- Considerations
 - slow repetition rate with many protons in each pulse (0.1 - 1 Hz).
 - high repetition with less protons in each pulse. (10-100 Hz)

- Options
 - 200 MeV Linac + 3 GeV Booster synchrotron + Proton FFAG (10 GeV)
 - 8 GeV Fermilab superconducting LINAC (20 Hz upgrade) + accumulator buncher
 - SPL at CERN (50 Hz) + accumulator/buncher
 - others (BNL, Japan, etc.)

Optimum proton energy for high-Z target is broad, but drops at low-energy

Optimum Proton Energy

Simulation by MARS14

Target and Pion Capture

- Achieve highly intense muon beam by maximizing pion production and collecting as many of them as possible.
 - soft pion production
 - high Z material
 - sustain high beam power (1-4 MW)
- Neutrino Factory Concept
 - Liquid mercury target ?
 - Pion capture system
 - 20 T superconducting magnet.
 - Magnetic horn system

solenoid capture (US, Japan)

Liquid Mercury Tests

A Proposal to the ISOLDE and Neutron Time-of-Flight Experiments Committee

Studies of a Target System for a 4-MW, 24-GeV Proton Beam

J. Roger J. Bennett¹, Luca Bruno², Chris J. Densham¹, Paul V. Drumm¹, T. Robert Edgecock¹, Tony A. Gabriel³, John R. Haines³, Helmut Haseroth², Yoshinari Hayato⁴, Steven J. Kahn⁵, Jacques Lettry², Changguo Lu⁶, Hans Ludewig⁵, Harold G. Kirk⁵, Kirk T. McDonald⁶, Robert B. Palmer⁵, Yarema Prykarpatskyy⁵, Nicholas Simos⁵, Roman V. Samulyak⁵, Peter H. Thieberger⁵, Koji Yoshimura⁴

> Spokespersons: H.G. Kirk, K.T. McDonald Local Contact: H. Haseroth

15T NC magnet (Liq.N2)

MERIT Experiment at CERN

n-TOF beam line at CERN (nTOF11)

Bunching and Phase Rotation

- bunching to fit in an RF system (200 MHz?).
 - originally muon beam spread longitudinally due to different energy.
- Phase rotation : accelerate slow muons and decelerate fast muons to align muon beam energy.

Phase

Reduction of Beam Emittance (Cooling)

- Emittance = a volume in phase space occupied by beam particles
 - for transverse $(x, \frac{dx}{dz}, y, \frac{dy}{dz})$
- Reduce the muon beam emittance so that as many muons as possible can be accepted in the accelerators following. (Cooling)

 $/_{\pi}$ and μ after focalization

Ionization Cooling

- Ordinary cooling (Stochastic cooling etc.) is too slow. A novel method for muons are needed.
- ionization cooling system consists of degraders (absorber) and accelerating RF cavities.
- to minimize heating, degrader should have large radiation length (X₀) and focusing system make the beta function small.

MICE - Ionization Cooling Demonstration

- MICE (= Muon Ionization Cooling Experiment) to demonstrate the principle of ionization cooling.
- Building a section of cooling channel to demonstrate the principle of ionization cooling
- measure : transverse emittance reduction of 10 % with 1 % relative accuracy
- method : single particle measurement (since no ordinary method of emittance measurements available.)

- measure track parameters before and after cooling channels
- Integration of accelerator and particle physicists.

New MUCOOL Test Area Completed – FNAL

LH2 Absorber Cryostat – KEK

Coupling coil

RF cavity

Thin absorber windows Tested – new technique – ICAR Universities

201 MHz half-shell ebeam welding of Stiffening – JLab

LH2 absorber

Focus coil

5T Cooling Channel Solenoid – LBNL & Open Cell NCRF Cavity operated at Lab G – FNAL

Ionization Cooling - MUCOOL

MUCOOL at Fermilab

Scaling FFAG

Acceleration

- Rapid Acceleration (to 20-50 GeV) is needed.
 - synchrotron not work.
- Options
 - 1.Scaling FFAG (Fixed Field Alternating Gradient) accelerator
 - Japanese design
 - 2.Non-Scaling FFAG
 - US Study 2A
 - 3.RLA (Recirculating Linear Accelerator)
 - racetrack or dogbone type
 - US Study 2

Non-Scaling FFAG

Acceleration

- Rapid Acceleration (to 20-50 GeV) is needed.
 - synchrotron not work.

Options

- 1.Scaling FFAG (Fixed Field Alternating Gradient) accelerator
 - Japanese design

2.Non-Scaling FFAG

- US Study 2A
- 3.RLA (Recirculating Linear Accelerator)
 - racetrack or dogbone type
 - US Study 2

Non-Scaling FFAG

What is a FFAG accelerator ?

- Scaling FFAG
 - quick acceleration due to a fixed magnetic field
 - non-uniform magnetic field

$$B(r) = B_0 \left(\frac{r}{r_0}\right)^k \ (k = 2 \sim 10)$$

- alternating focus-bending and defocus-bending would provide strong beam focusing
- large transverse acceptance
- large longitudinal acceptance
- invented by C. Okawa in 1950

Storage Ring

- Triangle Ring
 - more fraction of straight sections (up tp 48 %), but less flexibility
 - two rings in single tunnel
- Racetrack Ring
 - less fraction of straight section (up to 38 %), but more flexibility to beam directions.
 - one rings in two tunnels.
- Both signed muons are circulated with timing discrimination.
- Dependent on accelerator and detector locations.

Neutrino Factory

CERN Layout

US Neutrino Factory

- Proton Driver
 - primary beam on production target
- Target, Capture, Decay
 - capture pions, which decay into muons.
- Bunching, Phase Rotation
 - reduce energy spread of bunch
- Cooling
 - reduce transverse momentum
- Acceleration
 - from 200 MeV to 20-50 GeV
- Decay Ring
 - store for about 500 turns
 - long straight sections

4 FFAG rings + storage ring (no cooling)

Neutrino Factory at J-PARC

FFAG-based Scenario

Neutrino Factory Detector Options

Segmented Magnetized Detector

• Totally Active Scintillator Detector

• Liquid Ar Detector

Emulsion Detector

Beta Beam

What Is a Beta Beam ?

- The "Beta beam" is a future neutrino facility which produce pure and intense (anti) electron neutrino beams, by accelerating radioactive ions and storing them in a decay ring.
- Proposed by Piero Zucchelli
 - Phys. Lett. B532 (2002) 166 -172.
- Advantages :
 - Energy distribution and normalization of neutrinos can be well known.

- When radioactive ions with a long lifetime (~sec) are selected, conventional accelerators, not rapid accelerators, can be used.
- EURISOL
 - EURISOL is a project to aim a next-generation facility for online production of radioactive isotopes),
 - Beta Beam Design Study is a part of EURISOL Design Study,

Ion Choice for Beta Beam

- Considerations
 - need to produce reasonable amounts of ions.
 - not too short lifetime to get reasonable intensities.
 - not too long lifetime otherwise no decays at high energy.

Electron Anti-neutrinos

$${}_2^6He \rightarrow {}_3^6Li + e^- + \bar{\nu}_e$$

average energy = 1.94 MeV lifetime =

Electron Neutrinos

$$^{18}_{10}Ne \rightarrow ^{18}_{9}F + e^+ + \nu_e$$

average energy = 1.86 MeV

lifetime =

⁶He Production from ⁹Be ¹⁸Ne Production from Mg0

fact

Spallation neutrons

- ⁶He Production
 - Proton beam impinge on water-cooled W or liquid lead core to produce neutrons. The neutrons hit surrounding BeO to produce ⁶He.
 - Production rate is ~2x10¹³ ions/sec for 200 kW on target.
- Transfer line to ion source high-energy protons. **Spallation target:** a) water-cooled W b) liquid Pb ISOL target (BeO) in concentric cylinder $^{9}Be(n,\alpha)^{6}He$

⁶He and ⁴He

⁹Be

- ¹⁸Ne Production
 - Proton beam impinge on a MgO target to produce ¹⁸Ne.
 - Production rate is 1x10¹² ions/sec.

60 GHz ECR Duoplamatron Ion Source

The nuclides of interest are extracted and then ionized based on ion source technology.

Acceleration

Neutrino source

Beta Beam Concept

Monochromatic Neutrino Beam (Electron Capture)

- Radioactive ions with electron capture would give monochromatic-energy neutrino.
- ¹⁵⁰Dy
 - possible to produce 1x10¹¹ of ¹⁵⁰Dy atoms/second with 50 micro A proton beam at TRIUMF.
 - 10¹⁸ decays possible ?

Decay	T _{1/2}	BR_{v}	EC/v	I_{EC}^{β}	B(GT)	E _{GR}	$\Gamma_{\sf GR}$	Q _{EC}	E _v	ΔE_{v}
¹⁴⁸ Dy→ ¹⁴⁸ Tb [*]	3.1 m	1	0.96	0.96	0.46	620		2682	2062	
¹⁵⁰ Dy→ ¹⁵⁰ Tb [*]	7.2 m	0.64	1	1	0.32	397		1794	1397	
¹⁵² Tm2 ⁻ → ¹⁵² E _T *	8.0 s	1	0.45	0.50	0.48	4300	520	8700	4400	520
¹⁵⁰ Ho2 ⁻ → ¹⁵⁰ Dy [*]	72 s	1	0.77	0.56	0.25	4400	400	7400	3000	400

New Physics at a Neutrino Factory

New Physics at a Neutrino Factory

Why do we need high-precision determination of the lepton mixing parameters ?

The Big Questions

- What is the origin of neutrino mass?
- Did neutrinos play a role in our existence?
- Did neutrinos play a role in forming galaxies?
- Did neutrinos play a role in birth of the universe?
- Are neutrinos telling us something about unification of matter and/or forces?
- Will neutrinos give us more surprises?
 Big questions = tough questions to answer

Is the Lepton Mixing Matrix Unitary ?

- So far, the neutrino mixing matrix is mostly assumed to be unitary. Ten, it can be presented by only 4 parameters (3 angle and 1 phase).
- In principle, the neutrino mixing matrix can have 18 parameters, even in the 3 flavor generation.

$$V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - s_{23}s_{13}c_{12}e^{i\delta} & c_{23}c_{12} - s_{23}s_{13}s_{12}e^{i\delta} & s_{23}c_{13} \\ s_{23}s_{12} - c_{23}s_{13}c_{12}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{13}s_{12}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$
$$\times \begin{pmatrix} e^{-i\frac{\phi_1}{2}} & 0 & 0 \\ 0 & e^{-i\frac{\phi_2}{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\times \begin{pmatrix} e^{-i\frac{\phi_1}{2}} & 0 & 0\\ 0 & e^{-i\frac{\phi_2}{2}} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

$$V = \begin{pmatrix} V_{e1} & V_{e2} & V_{e3}\\ V_{\mu 1} & V_{\mu 2} & V_{\mu 3}\\ V_{\tau 1} & V_{\tau 2} & V_{\tau 3} \end{pmatrix} \times \begin{pmatrix} e^{-i\frac{\phi_1}{2}} & 0 & 0\\ 0 & e^{-i\frac{\phi_2}{2}} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

From B Factory to Neutrino Factory

$$\begin{array}{c} \mbox{CKM quark} \\ \mbox{mixing:} \\ \mbox{W} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} \\ 0 & e^{-i\delta} & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ \mbox{Exp. steps:} \\ \mbox{\Theta}_{12} \rightarrow \ \ensuremath{\theta}_{23} \rightarrow \ \ensuremath{\theta}_{13} \rightarrow \ \ensuremath{\delta} \\ \mbox{mixing:} \\ \mbox{-13^\circ} & \mbox{-}2^\circ & \mbox{-}0.2^\circ & \mbox{-}65^\circ \\ \mbox{unitarity ?} \end{array}$$

MNS lepton mixing:

	(1	0	0 \	(C ₁₃	0	s ₁₃)	(C ₁₂	$\mathbf{s_{12}}$	0	$(\mathbf{e}^{\mathbf{i} ho})$	0	0
$\mathbf{V} =$	0	C ₂₃	s ₂₃	0	${f e}^{-{f i}\delta}$	0	$-s_{12}$	c_{12}	0	0	$\mathbf{e}^{\mathbf{i}\sigma}$	0
	(0	$-{\bf s_{23}}$	c_{23}	$\begin{pmatrix} \mathbf{c_{13}} \\ 0 \\ -\mathbf{s_{13}} \end{pmatrix}$	0	c ₁₃ /	(O	0	1)	(0	0	1/

Exp. steps: $\theta_{23} \rightarrow \theta_{12} \rightarrow \theta_{13} \rightarrow \delta/\rho/\sigma$ new physics ? ~45° ~33° <10° ~??? unitarity?

How to Test Unitarity ?

Normalization Conditions

$$|V_{e1}|^2 + |V_{e2}|^2 + |V_{e3}|^2 = 1$$

- Orthogonality Conditions
 - Examine Unitarity Triangles
 - various combinations of the unitarity triangles for the Lepton mixing.
- Neutral Current (total number of active neutrino is conserved ?)

$$\sum_{n} P(\nu_m \to \nu_n) = 1$$

Varger, Geer, Whisnant (2004)

Example : Unitarity Triangle

- As in the CKM triangle, the area of the MNS triangle is proportional to the lepton Jarlskog parameter, J.
 - Both $\sin^2 \theta_{13}$ and $\sin \delta$ should be large.
 - Physics case for $\sin^2 \theta_{13} > 0.01$
- Tau appearance is needed.
- Only a neutrino factory can do a study of the unitarity of the MNS matrix.

$$\begin{aligned} \alpha_l &\equiv \arg\left(-\frac{V_{e1}^* V_{e2}}{V_{\mu 1}^* V_{\mu 2}}\right) \\ \beta_l &\equiv \arg\left(-\frac{V_{\mu 1}^* V_{\mu 2}}{V_{\tau 1}^* V_{\tau 2}}\right) \\ \gamma_l &\equiv \arg\left(-\frac{V_{\tau 1}^* V_{\tau 2}}{V_{e1}^* V_{e2}}\right) \end{aligned}$$

Sources for Non-unitarity, and new interaction ?

- More than 3 generations
 - sterile neutrinos ?
- New interactions (as in the quark case in B-factories)

SU(2) assumed, it is related (constrained) by charged lepton flavor violation.

Towards Big Picture

- Neutrino Oscillation Physics
 - Objectives are

- Future Neutrino Facilities
 - Superbeams
 - Beta beam
 - Neutrino factory
 - Neutrino Factory Complex and R&D
- New physics beyond the standard neutrino oscillation

• Eight-fold Degeneracies

- Neutrino Oscillation Physics
 - Objectives are

Search for θ_{13}

- Future Neutrino Facilities
 - Superbeams
 - Beta beam
 - Neutrino factory
 - Neutrino Factory Complex and R&D
- New physics beyond the standard neutrino oscillation

• Eight-fold Degeneracies

- Neutrino Oscillation Physics
 - Objectives are

Search for θ_{13}

Mass Hierarchy

- Future Neutrino Facilities
 - Superbeams
 - Beta beam
 - Neutrino factory
 - Neutrino Factory Complex and R&D
- New physics beyond the standard neutrino oscillation

• Eight-fold Degeneracies

- Neutrino Oscillation Physics
 - Objectives are

Search for θ_{13}

Mass Hierarchy

Discovery of Leptonic CP Violation δ

Eight-fold Degeneracies

- Future Neutrino Facilities
 - Superbeams
 - Beta beam
 - Neutrino factory
 - Neutrino Factory Complex and R&D
- New physics beyond the standard neutrino oscillation