St. Andrews, August '06

Models of Neutrino Masses & Mixings

G. Altarelli Universita' di Roma Tre/CERN

Some recent work by our group G.A., F. Feruglio, I. Masina, hep-ph/0402155, G.A., F. Feruglio, hep-ph/0504165,hep-ph/0512103 G.A, R. Franceschini, hep-ph/0512202. Reviews:

G.A., F. Feruglio, New J.Phys.6:106,2004 [hep-ph/0405048]; G.A., hep-ph/0410101; F. Feruglio, hep-ph/0410131 For v masses and mixings we do not have so far a Standard Model: many possibilities are still open.

In fact this is the case also for quark and charged leptons; we do not have a theory of flavour that explains the observed spectrum, mixings and CP violation.

 $\nu \mbox{'s}$ are interesting because they can provide new clues on this important problem

In my lectures I will review what we have learnt and the ideas that are being used in model building.

Lecture 1: Basic concepts and experimental facts. Lecture 2,3: A survey of different classes of models Summary of basic concepts and experimental facts.

Also, a number of assumptions to restrict the subject of my lectures:

e.g. no exotic interpretation of data only 3 active v's CPT invariance

 $P(v_e < v_\mu) = |< v_\mu(L)| v_e > |^2 = \sin^2(2\theta) \cdot \sin^2(\Delta m^2 L/4E)$

At a distance L, v_{μ} from μ^{-} decay can produce e⁻ via charged weak interact's

Solid evidence for solar and atmosph. v oscillations (+LSND unclear)

 Δm^2 values fixed: $\Delta m^2_{atm} \sim 2.5 \ 10^{-3} \ eV^2$, $\Delta m^2_{sol} \sim 8 \ 10^{-5} \ eV^2$ $(\Delta m^2_{LSND} \sim 1 \ eV^2)$

mixing angles: θ_{12} (solar) large θ_{23} (atm) large, ~ maximal θ_{13} (CHOOZ) small

v oscillations measure Δm^2 . What is m^2 ?

0νββ experi	<	$^{2} = \frac{1}{G(Q,Z) IM_{nucl}l^{2} \tau}$			
d d Pavan		e =⊽ e	phase sp	ace	Matrix elmnt large uncrtnts
Experiment	Isotope	τ _{1/2} > [y]	range <m<sub>v> [eV]</m<sub>		claimed evidence
Heidelberg Moscow 2001	⁷⁶ Ge	1.9 10 ²⁵	0.3-2.5		only by a part
IGEX 2002	⁷⁶ Ge	1.57 10 ²⁵	0.3-2.5		of the collaboration
Cuoricino 2005 NEMO 2005	¹³⁰ Te ¹⁰⁰ Mo	2 10 ²⁴ 4.6 10 ²³	0.3-0.7 0.6-1.0		started in 2003

 $m_{ee} = |\Sigma U_{ej}^2 m_j e^{i\alpha j}|$

(+)

Future: a factor ~ 10 improvement in next decade

v oscillations measure Δm^2 . What is m^2 ?

By itself CMB (eg WMAP) is only mildly sensitive to $\Sigma_i m_i$ Only in combination with Large Scale Structure (2dFGRS, SDSS) the limit becomes stronger. And even stronger by adding the Lyman alpha forest data (but some tension among the data).

Seljac et al '06

Neutrino masses are really special! $m_t/(\Delta m_{atm}^2)^{1/2} \sim 10^{12}$ Massless v's?

• no v_R

• L conserved

Small v masses?

- v_{R} very heavy
- L not conserved

How to guarantee a massless neutrino?

 ν 's have no electric charge. Their only charge is lepton number L.

IF L is not conserved (not a good quantum number) v and \overline{v} are not really different

Majorana mass: $v_R^T v_R \text{ or } v_L^T v_L$ (we omit the charge conj. matrix C)

Violates L, B-L by
$$|\Delta L| = 2$$

Weak isospin I

$$v_L \implies I = 1/2, I_3 = 1/2$$

 $v_R \implies I = 0, I_3 = 0$
Dirac Mass:

 $\overline{v}_L v_R + \overline{v}_R v_L$ $|\Delta I| = 1/2$ Can be obtained from Higgs doublets: $v_L \overline{v}_R H$

Majorana Mass:

• $v_L^T v_L$ $|\Delta I| = 1$ Non ren., dim. 5 operator: $v_L^T v_L HH$ • $v_R^T v_R$ $|\Delta I| = 0$ Directly compatible with SU(2)xU(1)! Minkowski; Yanagida; Gell-Mann, Ramond , Slansky; Glashow; Mohapatra, Senjanovic.....

 $m_D \overline{v}_L v_R$ Dirac mass m from Higgs doublet(s)

In general ν mass terms are:

More general see-saw mechanism:

$$\begin{array}{ccc} \nu_{L} & \nu_{R} \\ \nu_{L} & \left(\begin{array}{cc} \lambda v^{2}/M_{L} & m_{D} \\ m_{D} & M_{R} \end{array}\right) \\ m_{light} \sim & \frac{m_{D}^{2}}{M_{R}} & and/or & \frac{\lambda v^{2}}{M_{L}} \\ m_{heavy} \sim M_{R} & m_{eff} = v^{T}_{L}m_{light}v_{L} \end{array}$$

Whatever the underlying dynamics O₅ is a more general effective description of light Majorana neutrino masses

v oscillations point to very large values of M

A very natural and appealing explanation:

v's are nearly massless because they are Majorana particles and get masses through L non conserving interactions suppressed by a large scale M ~ M_{GUT}

m _ν ~	<u>m²</u> M	m:≤ m _t ~ v ~ 200 GeV M: scale of L non cons.
Note:		
	$m_{v} \sim (\Delta$	$(m_{atm}^2)^{1/2} \sim 0.05 \text{ eV}$
		~ 200 GeV
	Μ	~ 10 ¹⁵ GeV

Neutrino masses are a probe of physics at M_{GUT} !

The current experimental situation is still unclear

- LSND: true or false? -> MiniBooNE soon will tell
- what is the absolute scale of ν masses?
- no detection of $0\nu\beta\beta$ (proof that ν 's are Majorana) ••••••

Different classes of models are still possible:

Defining: $\Delta m_{atm}^2 = m_3^2 - m_2^2 > \text{or} < 0$ $\Delta m_{sol}^2 = m_2^2 - m_1^2 > 0$

one has:

$$m_{3}^{2} = \overline{m^{2}} + \frac{2}{3}\Delta m_{atm}^{2} + \frac{1}{3}\Delta m_{sol}^{2}$$

$$m_{2}^{2} = \overline{m^{2}} - \frac{1}{3}\Delta m_{atm}^{2} + \frac{1}{3}\Delta m_{sol}^{2}$$

$$m_{1}^{2} = \overline{m^{2}} - \frac{1}{3}\Delta m_{atm}^{2} - \frac{2}{3}\Delta m_{sol}^{2}$$
and

$$\overline{m^{2}} >> \left|\Delta m_{atm}^{2}\right| > \Delta m_{sol}^{2} \quad \text{degenerate}$$

$$\Delta m_{atm}^{2} < 0 \quad \text{inverse hierarchy}$$

$$\Delta m_{atm}^{2} > 0 \quad \text{normal hierarchy}$$

Parameters in the lepton sector

Neutrino oscillation parameters

• 2 distinct frequencies

• 2 large angles, 1 small

parameter	best fit	2σ	3σ	5σ
$\Delta m_{21}^2 \left[10^{-5} \mathrm{eV}^2 \right]$	6.9	6.0 - 8.4	5.4 - 9.5	2.1 - 28
$\Delta m_{31}^2 [10^{-3} {\rm eV}^2]$	2.6	1.8 - 3.3	1.4 - 3.7	0.77 - 4.8
$\sin^2 \theta_{12}$	0.30	0.25 - 0.36	0.23 - 0.39	0.17 – 0.48
$\sin^2 \theta_{23}$	0.52	0.36 - 0.67	0.31 - 0.72	0.22 – 0.81
$\sin^2 \theta_{13}$	0.006	≤ 0.035	≤ 0.054	≤ 0.11

Measuring θ_{13} is crucial for future v-oscill's experiments (eg CP violation)

Sensitivity to $\sin^2 2\theta_{13}$ at 90% CL

A possible time map for $sin^2 2\theta_{13}$

 \oplus

Improvement of Δm_{31}^2 and $\sin^2\theta_{23}$

 \bigoplus

÷....

$0\nu\beta\beta$ would prove that L is not conserved and ν 's are Majorana Also can tell degenerate, inverted or normal hierarchy

$$|m_{ee}| = c_{13}^2 [m_1 c_{12}^2 + e^{i\alpha} m_2 s_{12}^2] + m_3 e^{i\beta} s_{13}^2$$

Present exp. limit: m_{ee} < 0.3-0.5 eV (and a hint of signal????? Klapdor Kleingrothaus)

A most attractive possibility:

BG via Leptogenesis near the GUT scale

 $T \sim 10^{12\pm3}$ GeV (after inflation)

Only survives if $\Delta(B-L) \neq is not zero$ (otherwise is washed out at T_{ew} by instantons)

Buchmuller,Yanagida, Plumacher, Ellis, Lola, Giudice et al, Fujii et al

Main candidate: decay of lightest v_R (M~10¹² GeV)

L non conserv. in v_R out-of-equilibrium decay:

B-L excess survives at T_{ew} and gives the obs. B asymmetry.

Quantitative studies confirm that the range of m_i from ν oscill's is compatible with BG via (thermal) LG

In particular the bound was derived for hierarchy

$m_i < 10^{-1} eV$

Can be relaxed for degenerate neutrinos So fully compatible with oscill'n data!! Buchmuller, Di Bari, Plumacher; Giudice et al; Pilaftsis et al; Hambye et al

Model building Quality factors for models:

- Based on the most general lagrangian compatible with some simple symmetry or dynamical principle
- Should be complete: address at least charged leptons and neutrinos (U $_{P-NMS} = U^+_e U_v$, and the gauge symmetry connects ch. leptons and LH neutrinos)
- As many as possible small parameters (masses and mixings) should be naturally explained as a consequence.
- The necessary vev configuration should be a minimum of the most general potential for a region of parameter space
- The stability under radiative corrections and higher dim operators must be checked
- Simplicity, economy of fields and parameters, predictivity

General remarks

or

• After KamLAND, SNO and WMAP.... not too much hierarchy is needed for v masses:

 $r \sim \Delta m_{sol}^2 / \Delta m_{atm}^2 \sim 1/30$

Precisely at 2*σ*: 0.025 < r < 0.049

 $m_{heaviest} < 0.2 - 0.7 eV$ $m_{next} > ~8 \ 10^{-3} eV$

For a hierarchical spectrum: $\frac{m_2}{m_3} \approx \sqrt{r} \approx 0.2$ Comparable to: $\lambda_C \approx 0.22$ or $\sqrt{\frac{m_\mu}{m_\tau}} \approx 0.24$

Suggests the same "hierarchy" parameters for q, l, ν e.g. θ_{13} not too small! • Still large space for non maximal 23 mixing

 $2-\sigma$ interval $0.32 < \sin^2\theta_{23} < 0.62$ Maximal θ_{23} theoretically hard

• θ_{13} not necessarily too small probably accessible to exp.

Very small θ_{13} theoretically hard

"Normal" models: θ_{23} large but not maximal, θ_{13} not too small (θ_{13} of order λ_{c} or λ_{c}^{2})

"Exceptional" models: θ_{23} very close to maximal and/or θ_{13} very small or: a special value for θ_{12} Natural models of the "normal" type are not too difficult to build up

It is reasonable to attribute hierarchies in masses and mixings to differences in some flavour quantum number(s).

A simplest flavour (or horizontal) symmetry is U(1)_F

For example, some simple models based on see-saw and $U(1)_F$ work for all quark and lepton masses and mixings, are natural and compatible with (SUSY) GUT's, e.g SU(5)xU(1)_F.

Larger flavour symmetry groups have been studied. They are more predictive but less flexible. The problem of the "best" flavour group is still open.

The most ambitious models try to combine (SUSY) SO(10) GUT's with a suitable flavour group Hierarchy for masses and mixings via horizontal $U(1)_{F}$ charges.

Froggatt, Nielsen '79

Principle: A generic mass term **q**₁, **q**₂, **q**_H: $\overline{R}_1 m_{12} L_2 H$ U(1) charges of is forbidden by U(1) \overline{R}_1 , L₂, H if $q_1 + q_2 + q_H$ not 0 U(1) broken by vev of "flavon" field θ with U(1) charge q_{θ} = -1. If vev $\theta = w$, and w/M= λ we get for a generic interaction: $\overline{R}_{1}m_{12}L_{2}H(\theta/M)q^{1+q^{2}+qH}$ $m_{12} \rightarrow m_{12}\lambda^{q^{1}+q^{2}+qH}$ Hierarchy: More Δ_{charge} -> more suppression (λ small) One can have more flavons (λ , λ ', ...) with different charges (>0 or <0) etc -> many versions